Perplexica/src/lib/providers/lmstudio.ts
haddadrm 6edac6938c feat: Add LM Studio Support and Thinking Model Panel
LM Studio Integration:
- Added LM Studio provider with OpenAI-compatible API support
- Dynamic model discovery via /v1/models endpoint
- Support for both chat and embeddings models
- Docker-compatible networking configuration

Thinking Model Panel:
- Added collapsible UI panel for model's chain of thought
- Parses responses with <think> tags to separate reasoning
- Maintains backward compatibility with regular responses
- Styled consistently with app theme for light/dark modes
- Preserves all existing message functionality (sources, markdown, etc.)

These improvements enhance the app's compatibility with local LLMs and
provide better visibility into model reasoning processes while maintaining
existing functionality.
2025-01-26 18:18:35 +04:00

89 lines
No EOL
2.3 KiB
TypeScript

import { OpenAIEmbeddings } from '@langchain/openai';
import { ChatOpenAI } from '@langchain/openai';
import { getKeepAlive, getLMStudioApiEndpoint } from '../../config';
import logger from '../../utils/logger';
import axios from 'axios';
interface LMStudioModel {
id: string;
// add other properties if LM Studio API provides them
}
interface ChatModelConfig {
displayName: string;
model: ChatOpenAI;
}
export const loadLMStudioChatModels = async (): Promise<Record<string, ChatModelConfig>> => {
const lmStudioEndpoint = getLMStudioApiEndpoint();
if (!lmStudioEndpoint) {
logger.debug('LM Studio endpoint not configured, skipping');
return {};
}
try {
const response = await axios.get<{ data: LMStudioModel[] }>(`${lmStudioEndpoint}/models`, {
headers: {
'Content-Type': 'application/json',
},
});
const lmStudioModels = response.data.data;
const chatModels = lmStudioModels.reduce<Record<string, ChatModelConfig>>((acc, model) => {
acc[model.id] = {
displayName: model.id,
model: new ChatOpenAI({
openAIApiKey: 'lm-studio',
configuration: {
baseURL: lmStudioEndpoint,
},
modelName: model.id,
temperature: 0.7,
}),
};
return acc;
}, {});
return chatModels;
} catch (err) {
logger.error(`Error loading LM Studio models: ${err}`);
return {};
}
};
export const loadLMStudioEmbeddingsModels = async () => {
const lmStudioEndpoint = getLMStudioApiEndpoint();
if (!lmStudioEndpoint) return {};
try {
const response = await axios.get(`${lmStudioEndpoint}/models`, {
headers: {
'Content-Type': 'application/json',
},
});
const lmStudioModels = response.data.data;
const embeddingsModels = lmStudioModels.reduce((acc, model) => {
acc[model.id] = {
displayName: model.id,
model: new OpenAIEmbeddings({
openAIApiKey: 'lm-studio', // Dummy key required by LangChain
configuration: {
baseURL: lmStudioEndpoint,
},
modelName: model.id,
}),
};
return acc;
}, {});
return embeddingsModels;
} catch (err) {
logger.error(`Error loading LM Studio embeddings model: ${err}`);
return {};
}
};