Compare commits

..

86 commits

Author SHA1 Message Date
ItzCrazyKns
7ec201d011
Merge pull request #599 from data5650/patch-1
feat: add Gemini 2.0 Flash Exp models
2025-02-07 11:29:29 +05:30
data5650
3582695054
feat: add Gemini 2.0 Flash Exp models
# Description
   Added two new Gemini models:
   - gemini-2.0-flash-exp
   - gemini-2.0-flash-thinking-exp-01-21

   # Changes Made
   - Updated src/lib/providers/gemini.ts to include new models
   - Maintained consistent configuration with existing models

   # Testing
   - Tested locally using Docker
   - Verified models appear in UI and are selectable
   - Confirmed functionality with sample queries

   # Additional Notes
   These models expand the available options for users who want to use the latest Gemini capabilities.
2025-02-05 00:47:34 +01:00
ItzCrazyKns
46541e6c0c feat(package): update markdown-to-jsx version 2025-02-02 14:31:18 +05:30
ItzCrazyKns
f37686189e feat(output-parsers): add empty check 2025-01-31 17:51:16 +05:30
ItzCrazyKns
0737701de0 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2025-01-11 13:11:18 +05:30
ItzCrazyKns
5c787bbb55 feat(app): lint & beautify 2025-01-11 13:10:23 +05:30
ItzCrazyKns
2dc60d06e3 feat(chat-window): show settings during error on mobile 2025-01-11 13:10:10 +05:30
ItzCrazyKns
ec90ea1686
Merge pull request #531 from hacking-racoon/feat/video-slide-stop
feat(SearchVideos): modify Lightbox to pause the prev video when sliding
2025-01-07 12:47:38 +05:30
ItzCrazyKns
01230bf1c5
Merge pull request #555 from realies/fix/ws-reconnect
fix(ws-error): add exponential reconnect mechanism
2025-01-07 12:32:06 +05:30
ItzCrazyKns
6d9d712790 feat(chat-window): correctly handle server side WS closure 2025-01-07 12:26:38 +05:30
ItzCrazyKns
99cae076a7 feat(chat-window): display toast when retried 2025-01-07 11:49:40 +05:30
ItzCrazyKns
b7f7d25f54 feat(chat-window): lint & beautify 2025-01-07 11:44:19 +05:30
ItzCrazyKns
0ec54fe6c0 feat(chat-window): remove toast 2025-01-07 11:43:54 +05:30
realies
5526d5f60f fix(ws-error): add exponential reconnect mechanism 2025-01-05 17:29:53 +00:00
ItzCrazyKns
0f6b3c2e69 Merge branch 'pr/538' 2025-01-05 14:15:58 +05:30
Sainadh Devireddy
5a648f34b8 Set pageContent correctly 2025-01-04 10:36:33 -08:00
Sainadh Devireddy
d18e88acc9 Delete msgs only belonging to the chat 2024-12-27 20:55:55 -08:00
ItzCrazyKns
409c811a42 feat(ollama): use axios instead of fetch 2024-12-26 19:02:20 +05:30
ItzCrazyKns
b5acf34ef8 feat(chat-window): fix bugs handling custom openai, closes #529 2024-12-26 18:59:57 +05:30
hacking-racoon
d30f714930 feat(SearchVideos): Modify Lightbox to pause the prev video when moving to next one, preventing interference with new video. 2024-12-25 15:19:23 +09:00
ItzCrazyKns
ee68095157
Merge pull request #523 from bart-jaskulski/groq-models
Update available models from Groq provider
2024-12-21 18:08:40 +05:30
Bart Jaskulski
960e34aa3d
Add Llama 3.3 model from Groq
Signed-off-by: Bart Jaskulski <bjaskulski@protonmail.com>
2024-12-19 08:07:36 +01:00
Bart Jaskulski
4cb38148b3
Remove deprecated Groq models
Signed-off-by: Bart Jaskulski <bjaskulski@protonmail.com>
2024-12-19 08:07:14 +01:00
ItzCrazyKns
c755f98230 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2024-12-18 19:42:28 +05:30
ItzCrazyKns
c3a231a528
feat(readme): add discord server 2024-12-16 20:59:21 +05:30
ItzCrazyKns
f30a61c4aa feat(metaSearchAgent): handle undefined content for YT. search 2024-12-16 18:24:01 +05:30
ItzCrazyKns
ea74e3013c
Merge pull request #519 from yslinear/hotfix
feat(anthropic): update chat models to include Claude 3.5 Haiku and new version for Sonnet
2024-12-15 21:32:49 +05:30
Ying-Shan Lin
1c3c689039
feat(anthropic): update chat models to include Claude 3.5 Haiku and new version for Sonnet 2024-12-13 17:24:15 +08:00
ItzCrazyKns
2c5ca94b3c feat(app): lint and beautify 2024-12-05 20:19:52 +05:30
ItzCrazyKns
db7407bfac feat(messageBox): style markdown 2024-12-05 20:19:41 +05:30
ItzCrazyKns
5b3e8a3214 feat(prompts): implement new prompt 2024-12-05 20:19:22 +05:30
ItzCrazyKns
d79d854e2d Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2024-12-02 21:08:06 +05:30
ItzCrazyKns
8cb74f1964 feat(contribution): update guidelines 2024-12-02 21:07:59 +05:30
ItzCrazyKns
f88912784b
Merge pull request #466 from timoa/fix/docs-markdown-lint
📚 chore(docs): fix Markdown lint issues in the docs
2024-12-01 21:05:23 +05:30
ItzCrazyKns
e08d864445 feat(focus): only icon on small devices 2024-11-30 20:58:11 +05:30
ItzCrazyKns
e4a0799503 feat(package): bump version 2024-11-29 18:37:02 +05:30
ItzCrazyKns
fdb3d09d12 Merge branch 'feat/single-search' 2024-11-29 18:07:33 +05:30
ItzCrazyKns
dc4a843d8a feat(agents): switch to MetaSearchAgent 2024-11-29 18:06:00 +05:30
ItzCrazyKns
92f66266b0 feat(agents): add a unified agent 2024-11-29 18:05:28 +05:30
ItzCrazyKns
177746235a feat(providers): add gemini 2024-11-28 20:47:18 +05:30
ItzCrazyKns
ecad065577 feat(searchAgent): handle empty fileIds 2024-11-27 15:13:46 +05:30
ItzCrazyKns
64ee19c70a feat(messageHandler): switch to webSearch mode if files 2024-11-25 12:34:37 +05:30
ItzCrazyKns
be745501aa feat(package): bump version 2024-11-25 12:23:23 +05:30
ItzCrazyKns
aa176c12f6
Merge pull request #484 from ItzCrazyKns/feat/uploads
Add file uploads
2024-11-24 20:29:46 +05:30
ItzCrazyKns
4b89008f3a feat(app): add file uploads 2024-11-23 15:04:19 +05:30
ItzCrazyKns
c650d1c3d9 feat(ollama): add keep_alive param 2024-11-20 19:11:47 +05:30
ItzCrazyKns
874505cd0e feat(package): bump version 2024-11-19 16:32:30 +05:30
ItzCrazyKns
b4a80d8ca0 feat(dockerfile): downgrade node version, closes #473 2024-11-19 14:40:24 +05:30
ItzCrazyKns
c7bab91803 feat(webSearchAgent): prevent excess results 2024-11-19 10:43:50 +05:30
ItzCrazyKns
a58adbfecc Update README.md 2024-11-17 23:01:24 +05:30
ItzCrazyKns
9e746aea5e feat(readme): remove ? from image URL 2024-11-17 23:01:02 +05:30
ItzCrazyKns
5e1331144a feat(readme): update readme cache 2024-11-17 22:59:29 +05:30
ItzCrazyKns
d789c970b1 feat(assets): update screenshot 2024-11-17 22:55:57 +05:30
ItzCrazyKns
e699cb2921 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2024-11-17 19:49:22 +05:30
ItzCrazyKns
03eed9693b Merge branch 'pr/451' 2024-11-17 19:48:56 +05:30
ItzCrazyKns
011570dd9b
Merge pull request #421 from sjiampojamarn/discover-nit
Make Discover link to a new tab
2024-11-17 19:40:05 +05:30
Damien Laureaux
f3e918c3e3
chore(docs): fix Markdown lint issues in the docs 2024-11-15 07:04:45 +01:00
ItzCrazyKns
18529391f4 Merge branch 'master' of https://github.com/ItzCrazyKns/Perplexica 2024-11-14 13:35:15 +05:30
ItzCrazyKns
a1a7470ca6 feat(package): update markdown-to-jsx 2024-11-14 13:35:10 +05:30
ItzCrazyKns
10c5ac1076
Merge pull request #448 from bastipnt/master
add db setup to CONTRIBUTING.md
2024-11-09 20:54:14 +05:30
Sharun
7c01d2656e
fix(EmptyChatMessageInput): focus on mount 2024-11-04 22:00:08 -06:00
litc0de
afb4786ac0
add db setup to CONTRIBUTING.md 2024-11-03 10:33:01 +01:00
ItzCrazyKns
1e99fe8d69 feat(package): bump version 2024-10-31 11:08:49 +05:30
ItzCrazyKns
012dfa5a74 feat(listLineOutputParser): handle unclosed tags 2024-10-30 10:29:21 +05:30
ItzCrazyKns
65d057a05e feat(suggestions): handle custom OpenAI 2024-10-30 10:29:06 +05:30
ItzCrazyKns
3e7645614f feat(image-search): handle custom OpenAI 2024-10-30 10:28:40 +05:30
ItzCrazyKns
7c6ee2ead1 feat(video-search): handle custom OpenAI 2024-10-30 10:28:31 +05:30
ItzCrazyKns
540f38ae68 feat(empty-chat): add settings for mobile 2024-10-30 09:14:09 +05:30
ItzCrazyKns
f1c0b5435b feat(delete-chat): use window.location to refresh page 2024-10-30 09:11:48 +05:30
ItzCrazyKns
b33e5fefba feat(navbar): remove comments 2024-10-29 20:00:31 +05:30
ItzCrazyKns
03d0ff2ca4 feat(navbar): make delete & plus button work 2024-10-29 19:59:58 +05:30
sjiampojamarn
687cbb365f Discover link to new page 2024-10-20 17:23:43 -07:00
ItzCrazyKns
dfb532e4d3 feat(package): bump version 2024-10-18 18:45:23 +05:30
ItzCrazyKns
c8cd959496 feat(dockerfile): update backend image 2024-10-18 17:29:26 +05:30
ItzCrazyKns
4576d3de13 feat(dockerfile): update docker image 2024-10-18 17:26:02 +05:30
ItzCrazyKns
8057f28b20 feat(settings): handle no models 2024-10-18 17:07:09 +05:30
ItzCrazyKns
36bb265e1f feat(dockerfile): revert base image 2024-10-18 12:27:56 +05:30
ItzCrazyKns
71fc19f525 feat(dockerfile): update registry 2024-10-18 12:24:55 +05:30
ItzCrazyKns
c7c0ebe5b6 feat(dockerfile): use NPM registry 2024-10-18 12:15:04 +05:30
ItzCrazyKns
8fe1b7c5e3 feat(webSearchAgent): revert prompt 2024-10-18 12:01:56 +05:30
ItzCrazyKns
6e0d3baef6 feat(dockerfile): update docker image 2024-10-18 11:50:56 +05:30
ItzCrazyKns
54e0bb317a feat(groq): update deprecated models 2024-10-18 11:05:57 +05:30
ItzCrazyKns
3e6e57dab0 feat(chat-window): fix rewrite, use messageID 2024-10-17 18:51:11 +05:30
ItzCrazyKns
5aad2febda feat(messageHandler): fix duplicate messageIDs 2024-10-17 18:50:43 +05:30
ItzCrazyKns
24e1919c5e feat(dockerfile): update image to prevent python errors 2024-10-17 10:46:18 +05:30
ItzCrazyKns
c7abd96b05 feat(readme): add networking 2024-10-17 10:01:00 +05:30
72 changed files with 2729 additions and 1969 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 151 KiB

After

Width:  |  Height:  |  Size: 641 KiB

View file

@ -17,6 +17,9 @@ jobs:
- name: Checkout code
uses: actions/checkout@v3
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
with:

View file

@ -36,3 +36,6 @@ coverage
# Ignore all files with the .DS_Store extension (macOS specific)
.DS_Store
# Ignore all files in uploads directory
uploads

View file

@ -8,6 +8,7 @@ Perplexica's design consists of two main domains:
- **Frontend (`ui` directory)**: This is a Next.js application holding all user interface components. It's a self-contained environment that manages everything the user interacts with.
- **Backend (root and `src` directory)**: The backend logic is situated in the `src` folder, but the root directory holds the main `package.json` for backend dependency management.
- All of the focus modes are created using the Meta Search Agent class present in `src/search/metaSearchAgent.ts`. The main logic behind Perplexica lies there.
## Setting Up Your Environment
@ -18,7 +19,8 @@ Before diving into coding, setting up your local environment is key. Here's what
1. In the root directory, locate the `sample.config.toml` file.
2. Rename it to `config.toml` and fill in the necessary configuration fields specific to the backend.
3. Run `npm install` to install dependencies.
4. Use `npm run dev` to start the backend in development mode.
4. Run `npm run db:push` to set up the local sqlite.
5. Use `npm run dev` to start the backend in development mode.
### Frontend

View file

@ -1,6 +1,9 @@
# 🚀 Perplexica - An AI-powered search engine 🔎 <!-- omit in toc -->
![preview](.assets/perplexica-screenshot.png)
[![Discord](https://dcbadge.vercel.app/api/server/26aArMy8tT?style=flat&compact=true)](https://discord.gg/26aArMy8tT)
![preview](.assets/perplexica-screenshot.png?)
## Table of Contents <!-- omit in toc -->
@ -13,6 +16,7 @@
- [Ollama Connection Errors](#ollama-connection-errors)
- [Using as a Search Engine](#using-as-a-search-engine)
- [Using Perplexica's API](#using-perplexicas-api)
- [Expose Perplexica to a network](#expose-perplexica-to-network)
- [One-Click Deployment](#one-click-deployment)
- [Upcoming Features](#upcoming-features)
- [Support Us](#support-us)
@ -133,6 +137,10 @@ Perplexica also provides an API for developers looking to integrate its powerful
For more details, check out the full documentation [here](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/API/SEARCH.md).
## Expose Perplexica to network
You can access Perplexica over your home network by following our networking guide [here](https://github.com/ItzCrazyKns/Perplexica/blob/master/docs/installation/NETWORKING.md).
## One-Click Deployment
[![Deploy to RepoCloud](https://d16t0pc4846x52.cloudfront.net/deploylobe.svg)](https://repocloud.io/details/?app_id=267)

View file

@ -1,4 +1,4 @@
FROM node:alpine
FROM node:20.18.0-alpine
ARG NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
ARG NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api

View file

@ -1,4 +1,4 @@
FROM node:slim
FROM node:18-slim
WORKDIR /home/perplexica
@ -9,8 +9,9 @@ COPY package.json /home/perplexica/
COPY yarn.lock /home/perplexica/
RUN mkdir /home/perplexica/data
RUN mkdir /home/perplexica/uploads
RUN yarn install --frozen-lockfile
RUN yarn install --frozen-lockfile --network-timeout 600000
RUN yarn build
CMD ["yarn", "start"]

View file

@ -22,6 +22,7 @@ services:
- 3001:3001
volumes:
- backend-dbstore:/home/perplexica/data
- uploads:/home/perplexica/uploads
- ./config.toml:/home/perplexica/config.toml
extra_hosts:
- 'host.docker.internal:host-gateway'
@ -50,3 +51,4 @@ networks:
volumes:
backend-dbstore:
uploads:

View file

@ -1,4 +1,4 @@
## Perplexica's Architecture
# Perplexica's Architecture
Perplexica's architecture consists of the following key components:

View file

@ -1,4 +1,4 @@
## How does Perplexica work?
# How does Perplexica work?
Curious about how Perplexica works? Don't worry, we'll cover it here. Before we begin, make sure you've read about the architecture of Perplexica to ensure you understand what it's made up of. Haven't read it? You can read it [here](https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/architecture/README.md).
@ -10,10 +10,10 @@ We'll understand how Perplexica works by taking an example of a scenario where a
4. After the information is retrieved, it is based on keyword-based search. We then convert the information into embeddings and the query as well, then we perform a similarity search to find the most relevant sources to answer the query.
5. After all this is done, the sources are passed to the response generator. This chain takes all the chat history, the query, and the sources. It generates a response that is streamed to the UI.
### How are the answers cited?
## How are the answers cited?
The LLMs are prompted to do so. We've prompted them so well that they cite the answers themselves, and using some UI magic, we display it to the user.
### Image and Video Search
## Image and Video Search
Image and video searches are conducted in a similar manner. A query is always generated first, then we search the web for images and videos that match the query. These results are then returned to the user.

View file

@ -10,7 +10,7 @@ This guide will show you how to make Perplexica available over a network. Follow
3. Stop and remove the existing Perplexica containers and images:
```
```bash
docker compose down --rmi all
```
@ -18,7 +18,7 @@ docker compose down --rmi all
5. Replace `127.0.0.1` with the IP address of the server Perplexica is running on in these two lines:
```
```bash
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
@ -28,7 +28,7 @@ args:
7. Rebuild and restart the Perplexica container:
```
```bash
docker compose up -d --build
```
@ -38,25 +38,25 @@ docker compose up -d --build
2. Navigate to the directory with the `docker-compose.yaml` file:
```
```bash
cd /path/to/docker-compose.yaml
```
3. Stop and remove existing containers and images:
```
```bash
docker compose down --rmi all
```
4. Open `docker-compose.yaml` in a text editor like Sublime Text:
```
```bash
nano docker-compose.yaml
```
5. Replace `127.0.0.1` with the server IP in these lines:
```
```bash
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
@ -66,7 +66,7 @@ args:
7. Rebuild and restart Perplexica:
```
```bash
docker compose up -d --build
```
@ -76,25 +76,25 @@ docker compose up -d --build
2. Navigate to the `docker-compose.yaml` directory:
```
```bash
cd /path/to/docker-compose.yaml
```
3. Stop and remove containers and images:
```
```bash
docker compose down --rmi all
```
4. Edit `docker-compose.yaml`:
```
```bash
nano docker-compose.yaml
```
5. Replace `127.0.0.1` with the server IP:
```
```bash
args:
- NEXT_PUBLIC_API_URL=http://127.0.0.1:3001/api
- NEXT_PUBLIC_WS_URL=ws://127.0.0.1:3001
@ -104,6 +104,6 @@ args:
7. Rebuild and restart Perplexica:
```
```bash
docker compose up -d --build
```

View file

@ -1,12 +1,12 @@
{
"name": "perplexica-backend",
"version": "1.9.0",
"version": "1.10.0-rc2",
"license": "MIT",
"author": "ItzCrazyKns",
"scripts": {
"start": "npm run db:push && node dist/app.js",
"build": "tsc",
"dev": "nodemon src/app.ts",
"dev": "nodemon --ignore uploads/ src/app.ts ",
"db:push": "drizzle-kit push sqlite",
"format": "prettier . --check",
"format:write": "prettier . --write"
@ -16,6 +16,7 @@
"@types/cors": "^2.8.17",
"@types/express": "^4.17.21",
"@types/html-to-text": "^9.0.4",
"@types/multer": "^1.4.12",
"@types/pdf-parse": "^1.1.4",
"@types/readable-stream": "^4.0.11",
"@types/ws": "^8.5.12",
@ -30,6 +31,7 @@
"@langchain/anthropic": "^0.2.3",
"@langchain/community": "^0.2.16",
"@langchain/openai": "^0.0.25",
"@langchain/google-genai": "^0.0.23",
"@xenova/transformers": "^2.17.1",
"axios": "^1.6.8",
"better-sqlite3": "^11.0.0",
@ -41,6 +43,8 @@
"express": "^4.19.2",
"html-to-text": "^9.0.5",
"langchain": "^0.1.30",
"mammoth": "^1.8.0",
"multer": "^1.4.5-lts.1",
"pdf-parse": "^1.1.1",
"winston": "^3.13.0",
"ws": "^8.17.1",

View file

@ -1,11 +1,13 @@
[GENERAL]
PORT = 3001 # Port to run the server on
SIMILARITY_MEASURE = "cosine" # "cosine" or "dot"
KEEP_ALIVE = "5m" # How long to keep Ollama models loaded into memory. (Instead of using -1 use "-1m")
[API_KEYS]
OPENAI = "" # OpenAI API key - sk-1234567890abcdef1234567890abcdef
GROQ = "" # Groq API key - gsk_1234567890abcdef1234567890abcdef
ANTHROPIC = "" # Anthropic API key - sk-ant-1234567890abcdef1234567890abcdef
GEMINI = "" # Gemini API key - sk-1234567890abcdef1234567890abcdef
[API_ENDPOINTS]
SEARXNG = "http://localhost:32768" # SearxNG API URL

View file

@ -1,280 +0,0 @@
import { BaseMessage } from '@langchain/core/messages';
import {
PromptTemplate,
ChatPromptTemplate,
MessagesPlaceholder,
} from '@langchain/core/prompts';
import {
RunnableSequence,
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
import logger from '../utils/logger';
import { IterableReadableStream } from '@langchain/core/utils/stream';
const basicAcademicSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: How does stable diffusion work?
Rephrased: Stable diffusion working
2. Follow up question: What is linear algebra?
Rephrased: Linear algebra
3. Follow up question: What is the third law of thermodynamics?
Rephrased: Third law of thermodynamics
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
const basicAcademicSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Academic', this means you will be searching for academic papers and articles on the web.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by the search engine and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
Anything between the \`context\` is retrieved from a search engine and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`;
const strParser = new StringOutputParser();
const handleStream = async (
stream: IterableReadableStream<StreamEvent>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const createBasicAcademicSearchRetrieverChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicAcademicSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const res = await searchSearxng(input, {
language: 'en',
engines: ['arxiv', 'google scholar', 'pubmed'],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: input, docs: documents };
}),
]);
};
const createBasicAcademicSearchAnsweringChain = (
llm: BaseChatModel,
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
) => {
const basicAcademicSearchRetrieverChain =
createBasicAcademicSearchRetrieverChain(llm);
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
if (optimizationMode === 'speed') {
return docsWithContent.slice(0, 15);
} else if (optimizationMode === 'balanced') {
const [docEmbeddings, queryEmbedding] = await Promise.all([
embeddings.embedDocuments(
docsWithContent.map((doc) => doc.pageContent),
),
embeddings.embedQuery(query),
]);
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
}
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicAcademicSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicAcademicSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicAcademicSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
) => {
const emitter = new eventEmitter();
try {
const basicAcademicSearchAnsweringChain =
createBasicAcademicSearchAnsweringChain(
llm,
embeddings,
optimizationMode,
);
const stream = basicAcademicSearchAnsweringChain.streamEvents(
{
chat_history: history,
query: query,
},
{
version: 'v1',
},
);
handleStream(stream, emitter);
} catch (err) {
emitter.emit(
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
logger.error(`Error in academic search: ${err}`);
}
return emitter;
};
const handleAcademicSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
) => {
const emitter = basicAcademicSearch(
message,
history,
llm,
embeddings,
optimizationMode,
);
return emitter;
};
export default handleAcademicSearch;

View file

@ -1,276 +0,0 @@
import { BaseMessage } from '@langchain/core/messages';
import {
PromptTemplate,
ChatPromptTemplate,
MessagesPlaceholder,
} from '@langchain/core/prompts';
import {
RunnableSequence,
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
import logger from '../utils/logger';
import { IterableReadableStream } from '@langchain/core/utils/stream';
const basicRedditSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: Which company is most likely to create an AGI
Rephrased: Which company is most likely to create an AGI
2. Follow up question: Is Earth flat?
Rephrased: Is Earth flat?
3. Follow up question: Is there life on Mars?
Rephrased: Is there life on Mars?
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
const basicRedditSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Reddit', this means you will be searching for information, opinions and discussions on the web using Reddit.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by Reddit and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
Anything between the \`context\` is retrieved from Reddit and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`;
const strParser = new StringOutputParser();
const handleStream = async (
stream: IterableReadableStream<StreamEvent>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const createBasicRedditSearchRetrieverChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicRedditSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const res = await searchSearxng(input, {
language: 'en',
engines: ['reddit'],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content ? result.content : result.title,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: input, docs: documents };
}),
]);
};
const createBasicRedditSearchAnsweringChain = (
llm: BaseChatModel,
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
) => {
const basicRedditSearchRetrieverChain =
createBasicRedditSearchRetrieverChain(llm);
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
if (optimizationMode === 'speed') {
return docsWithContent.slice(0, 15);
} else if (optimizationMode === 'balanced') {
const [docEmbeddings, queryEmbedding] = await Promise.all([
embeddings.embedDocuments(
docsWithContent.map((doc) => doc.pageContent),
),
embeddings.embedQuery(query),
]);
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.filter((sim) => sim.similarity > 0.3)
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
}
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicRedditSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicRedditSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicRedditSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
) => {
const emitter = new eventEmitter();
try {
const basicRedditSearchAnsweringChain =
createBasicRedditSearchAnsweringChain(llm, embeddings, optimizationMode);
const stream = basicRedditSearchAnsweringChain.streamEvents(
{
chat_history: history,
query: query,
},
{
version: 'v1',
},
);
handleStream(stream, emitter);
} catch (err) {
emitter.emit(
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
logger.error(`Error in RedditSearch: ${err}`);
}
return emitter;
};
const handleRedditSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
) => {
const emitter = basicRedditSearch(
message,
history,
llm,
embeddings,
optimizationMode,
);
return emitter;
};
export default handleRedditSearch;

View file

@ -1,460 +0,0 @@
import { BaseMessage } from '@langchain/core/messages';
import {
PromptTemplate,
ChatPromptTemplate,
MessagesPlaceholder,
} from '@langchain/core/prompts';
import {
RunnableSequence,
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
import logger from '../utils/logger';
import LineListOutputParser from '../lib/outputParsers/listLineOutputParser';
import { getDocumentsFromLinks } from '../lib/linkDocument';
import LineOutputParser from '../lib/outputParsers/lineOutputParser';
import { IterableReadableStream } from '@langchain/core/utils/stream';
import { ChatOpenAI } from '@langchain/openai';
const basicSearchRetrieverPrompt = `
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
If it is a smple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
There are several examples attached for your reference inside the below \`examples\` XML block
<examples>
1. Follow up question: What is the capital of France
Rephrased question:\`
<question>
Capital of france
</question>
\`
2. Hi, how are you?
Rephrased question\`
<question>
not_needed
</question>
\`
3. Follow up question: What is Docker?
Rephrased question: \`
<question>
What is Docker
</question>
\`
4. Follow up question: Can you tell me what is X from https://example.com
Rephrased question: \`
<question>
Can you tell me what is X?
</question>
<links>
https://example.com
</links>
\`
5. Follow up question: Summarize the content from https://example.com
Rephrased question: \`
<question>
summarize
</question>
<links>
https://example.com
</links>
\`
</examples>
Anything below is the part of the actual conversation and you need to use conversation and the follow-up question to rephrase the follow-up question as a standalone question based on the guidelines shared above.
<conversation>
{chat_history}
</conversation>
Follow up question: {query}
Rephrased question:
`;
const basicWebSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are also an expert at summarizing web pages or documents and searching for content in them.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
If the query contains some links and the user asks to answer from those links you will be provided the entire content of the page inside the \`context\` XML block. You can then use this content to answer the user's query.
If the user asks to summarize content from some links, you will be provided the entire content of the page inside the \`context\` XML block. You can then use this content to summarize the text. The content provided inside the \`context\` block will be already summarized by another model so you just need to use that content to answer the user's query.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by the search engine and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'. You do not need to do this for summarization tasks.
Anything between the \`context\` is retrieved from a search engine and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`;
const strParser = new StringOutputParser();
const handleStream = async (
stream: IterableReadableStream<StreamEvent>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const createBasicWebSearchRetrieverChain = (llm: BaseChatModel) => {
(llm as unknown as ChatOpenAI).temperature = 0;
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
const linksOutputParser = new LineListOutputParser({
key: 'links',
});
const questionOutputParser = new LineOutputParser({
key: 'question',
});
const links = await linksOutputParser.parse(input);
let question = await questionOutputParser.parse(input);
if (question === 'not_needed') {
return { query: '', docs: [] };
}
if (links.length > 0) {
if (question.length === 0) {
question = 'summarize';
}
let docs = [];
const linkDocs = await getDocumentsFromLinks({ links });
const docGroups: Document[] = [];
linkDocs.map((doc) => {
const URLDocExists = docGroups.find(
(d) =>
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
);
if (!URLDocExists) {
docGroups.push({
...doc,
metadata: {
...doc.metadata,
totalDocs: 1,
},
});
}
const docIndex = docGroups.findIndex(
(d) =>
d.metadata.url === doc.metadata.url && d.metadata.totalDocs < 10,
);
if (docIndex !== -1) {
docGroups[docIndex].pageContent =
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
docGroups[docIndex].metadata.totalDocs += 1;
}
});
await Promise.all(
docGroups.map(async (doc) => {
const res = await llm.invoke(`
You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
- **Journalistic tone**: The summary should sound professional and journalistic, not too casual or vague.
- **Thorough and detailed**: Ensure that every key point from the text is captured and that the summary directly answers the query.
- **Not too lengthy, but detailed**: The summary should be informative but not excessively long. Focus on providing detailed information in a concise format.
The text will be shared inside the \`text\` XML tag, and the query inside the \`query\` XML tag.
<example>
1. \`<text>
Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called containers.
It was first released in 2013 and is developed by Docker, Inc. Docker is designed to make it easier to create, deploy, and run applications
by using containers.
</text>
<query>
What is Docker and how does it work?
</query>
Response:
Docker is a revolutionary platform-as-a-service product developed by Docker, Inc., that uses container technology to make application
deployment more efficient. It allows developers to package their software with all necessary dependencies, making it easier to run in
any environment. Released in 2013, Docker has transformed the way applications are built, deployed, and managed.
\`
2. \`<text>
The theory of relativity, or simply relativity, encompasses two interrelated theories of Albert Einstein: special relativity and general
relativity. However, the word "relativity" is sometimes used in reference to Galilean invariance. The term "theory of relativity" was based
on the expression "relative theory" used by Max Planck in 1906. The theory of relativity usually encompasses two interrelated theories by
Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity.
General relativity explains the law of gravitation and its relation to other forces of nature. It applies to the cosmological and astrophysical
realm, including astronomy.
</text>
<query>
summarize
</query>
Response:
The theory of relativity, developed by Albert Einstein, encompasses two main theories: special relativity and general relativity. Special
relativity applies to all physical phenomena in the absence of gravity, while general relativity explains the law of gravitation and its
relation to other forces of nature. The theory of relativity is based on the concept of "relative theory," as introduced by Max Planck in
1906. It is a fundamental theory in physics that has revolutionized our understanding of the universe.
\`
</example>
Everything below is the actual data you will be working with. Good luck!
<query>
${question}
</query>
<text>
${doc.pageContent}
</text>
Make sure to answer the query in the summary.
`);
const document = new Document({
pageContent: res.content as string,
metadata: {
title: doc.metadata.title,
url: doc.metadata.url,
},
});
docs.push(document);
}),
);
return { query: question, docs: docs };
} else {
const res = await searchSearxng(question, {
language: 'en',
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: question, docs: documents };
}
}),
]);
};
const createBasicWebSearchAnsweringChain = (
llm: BaseChatModel,
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
) => {
const basicWebSearchRetrieverChain = createBasicWebSearchRetrieverChain(llm);
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
if (query.toLocaleLowerCase() === 'summarize') {
return docs;
}
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
if (optimizationMode === 'speed') {
return docsWithContent.slice(0, 15);
} else if (optimizationMode === 'balanced') {
const [docEmbeddings, queryEmbedding] = await Promise.all([
embeddings.embedDocuments(
docsWithContent.map((doc) => doc.pageContent),
),
embeddings.embedQuery(query),
]);
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.filter((sim) => sim.similarity > 0.3)
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
}
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicWebSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicWebSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicWebSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
) => {
const emitter = new eventEmitter();
try {
const basicWebSearchAnsweringChain = createBasicWebSearchAnsweringChain(
llm,
embeddings,
optimizationMode,
);
const stream = basicWebSearchAnsweringChain.streamEvents(
{
chat_history: history,
query: query,
},
{
version: 'v1',
},
);
handleStream(stream, emitter);
} catch (err) {
emitter.emit(
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
logger.error(`Error in websearch: ${err}`);
}
return emitter;
};
const handleWebSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
) => {
const emitter = basicWebSearch(
message,
history,
llm,
embeddings,
optimizationMode,
);
return emitter;
};
export default handleWebSearch;

View file

@ -1,220 +0,0 @@
import { BaseMessage } from '@langchain/core/messages';
import {
PromptTemplate,
ChatPromptTemplate,
MessagesPlaceholder,
} from '@langchain/core/prompts';
import {
RunnableSequence,
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import logger from '../utils/logger';
import { IterableReadableStream } from '@langchain/core/utils/stream';
const basicWolframAlphaSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: What is the atomic radius of S?
Rephrased: Atomic radius of S
2. Follow up question: What is linear algebra?
Rephrased: Linear algebra
3. Follow up question: What is the third law of thermodynamics?
Rephrased: Third law of thermodynamics
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
const basicWolframAlphaSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Wolfram Alpha', this means you will be searching for information on the web using Wolfram Alpha. It is a computational knowledge engine that can answer factual queries and perform computations.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by Wolfram Alpha and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
Anything between the \`context\` is retrieved from Wolfram Alpha and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`;
const strParser = new StringOutputParser();
const handleStream = async (
stream: IterableReadableStream<StreamEvent>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const createBasicWolframAlphaSearchRetrieverChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicWolframAlphaSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const res = await searchSearxng(input, {
language: 'en',
engines: ['wolframalpha'],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: input, docs: documents };
}),
]);
};
const createBasicWolframAlphaSearchAnsweringChain = (llm: BaseChatModel) => {
const basicWolframAlphaSearchRetrieverChain =
createBasicWolframAlphaSearchRetrieverChain(llm);
const processDocs = (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicWolframAlphaSearchRetrieverChain
.pipe(({ query, docs }) => {
return docs;
})
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicWolframAlphaSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicWolframAlphaSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
) => {
const emitter = new eventEmitter();
try {
const basicWolframAlphaSearchAnsweringChain =
createBasicWolframAlphaSearchAnsweringChain(llm);
const stream = basicWolframAlphaSearchAnsweringChain.streamEvents(
{
chat_history: history,
query: query,
},
{
version: 'v1',
},
);
handleStream(stream, emitter);
} catch (err) {
emitter.emit(
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
logger.error(`Error in WolframAlphaSearch: ${err}`);
}
return emitter;
};
const handleWolframAlphaSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = basicWolframAlphaSearch(message, history, llm);
return emitter;
};
export default handleWolframAlphaSearch;

View file

@ -1,91 +0,0 @@
import { BaseMessage } from '@langchain/core/messages';
import {
ChatPromptTemplate,
MessagesPlaceholder,
} from '@langchain/core/prompts';
import { RunnableSequence } from '@langchain/core/runnables';
import { StringOutputParser } from '@langchain/core/output_parsers';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import eventEmitter from 'events';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import logger from '../utils/logger';
import { IterableReadableStream } from '@langchain/core/utils/stream';
const writingAssistantPrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are currently set on focus mode 'Writing Assistant', this means you will be helping the user write a response to a given query.
Since you are a writing assistant, you would not perform web searches. If you think you lack information to answer the query, you can ask the user for more information or suggest them to switch to a different focus mode.
`;
const strParser = new StringOutputParser();
const handleStream = async (
stream: IterableReadableStream<StreamEvent>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
};
const createWritingAssistantChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
ChatPromptTemplate.fromMessages([
['system', writingAssistantPrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const handleWritingAssistant = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
) => {
const emitter = new eventEmitter();
try {
const writingAssistantChain = createWritingAssistantChain(llm);
const stream = writingAssistantChain.streamEvents(
{
chat_history: history,
query: query,
},
{
version: 'v1',
},
);
handleStream(stream, emitter);
} catch (err) {
emitter.emit(
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
logger.error(`Error in writing assistant: ${err}`);
}
return emitter;
};
export default handleWritingAssistant;

View file

@ -1,277 +0,0 @@
import { BaseMessage } from '@langchain/core/messages';
import {
PromptTemplate,
ChatPromptTemplate,
MessagesPlaceholder,
} from '@langchain/core/prompts';
import {
RunnableSequence,
RunnableMap,
RunnableLambda,
} from '@langchain/core/runnables';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { Document } from '@langchain/core/documents';
import { searchSearxng } from '../lib/searxng';
import type { StreamEvent } from '@langchain/core/tracers/log_stream';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import computeSimilarity from '../utils/computeSimilarity';
import logger from '../utils/logger';
import { IterableReadableStream } from '@langchain/core/utils/stream';
const basicYoutubeSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: How does an A.C work?
Rephrased: A.C working
2. Follow up question: Linear algebra explanation video
Rephrased: What is linear algebra?
3. Follow up question: What is theory of relativity?
Rephrased: What is theory of relativity?
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
const basicYoutubeSearchResponsePrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are set on focus mode 'Youtube', this means you will be searching for videos on the web using Youtube and providing information based on the video's transcript.
Generate a response that is informative and relevant to the user's query based on provided context (the context consits of search results containing a brief description of the content of that page).
You must use this context to answer the user's query in the best way possible. Use an unbaised and journalistic tone in your response. Do not repeat the text.
You must not tell the user to open any link or visit any website to get the answer. You must provide the answer in the response itself. If the user asks for links you can provide them.
Your responses should be medium to long in length be informative and relevant to the user's query. You can use markdowns to format your response. You should use bullet points to list the information. Make sure the answer is not short and is informative.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
Anything inside the following \`context\` HTML block provided below is for your knowledge returned by Youtube and is not shared by the user. You have to answer question on the basis of it and cite the relevant information from it but you do not have to
talk about the context in your response.
<context>
{context}
</context>
If you think there's nothing relevant in the search results, you can say that 'Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?'.
Anything between the \`context\` is retrieved from Youtube and is not a part of the conversation with the user. Today's date is ${new Date().toISOString()}
`;
const strParser = new StringOutputParser();
const handleStream = async (
stream: IterableReadableStream<StreamEvent>,
emitter: eventEmitter,
) => {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
};
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
const createBasicYoutubeSearchRetrieverChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
PromptTemplate.fromTemplate(basicYoutubeSearchRetrieverPrompt),
llm,
strParser,
RunnableLambda.from(async (input: string) => {
if (input === 'not_needed') {
return { query: '', docs: [] };
}
const res = await searchSearxng(input, {
language: 'en',
engines: ['youtube'],
});
const documents = res.results.map(
(result) =>
new Document({
pageContent: result.content ? result.content : result.title,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: input, docs: documents };
}),
]);
};
const createBasicYoutubeSearchAnsweringChain = (
llm: BaseChatModel,
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
) => {
const basicYoutubeSearchRetrieverChain =
createBasicYoutubeSearchRetrieverChain(llm);
const processDocs = async (docs: Document[]) => {
return docs
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
.join('\n');
};
const rerankDocs = async ({
query,
docs,
}: {
query: string;
docs: Document[];
}) => {
if (docs.length === 0) {
return docs;
}
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
if (optimizationMode === 'speed') {
return docsWithContent.slice(0, 15);
} else {
const [docEmbeddings, queryEmbedding] = await Promise.all([
embeddings.embedDocuments(
docsWithContent.map((doc) => doc.pageContent),
),
embeddings.embedQuery(query),
]);
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.filter((sim) => sim.similarity > 0.3)
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
}
};
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
context: RunnableSequence.from([
(input) => ({
query: input.query,
chat_history: formatChatHistoryAsString(input.chat_history),
}),
basicYoutubeSearchRetrieverChain
.pipe(rerankDocs)
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(processDocs),
]),
}),
ChatPromptTemplate.fromMessages([
['system', basicYoutubeSearchResponsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
llm,
strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
};
const basicYoutubeSearch = (
query: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
) => {
const emitter = new eventEmitter();
try {
const basicYoutubeSearchAnsweringChain =
createBasicYoutubeSearchAnsweringChain(llm, embeddings, optimizationMode);
const stream = basicYoutubeSearchAnsweringChain.streamEvents(
{
chat_history: history,
query: query,
},
{
version: 'v1',
},
);
handleStream(stream, emitter);
} catch (err) {
emitter.emit(
'error',
JSON.stringify({ data: 'An error has occurred please try again later' }),
);
logger.error(`Error in youtube search: ${err}`);
}
return emitter;
};
const handleYoutubeSearch = (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
) => {
const emitter = basicYoutubeSearch(
message,
history,
llm,
embeddings,
optimizationMode,
);
return emitter;
};
export default handleYoutubeSearch;

View file

@ -8,11 +8,13 @@ interface Config {
GENERAL: {
PORT: number;
SIMILARITY_MEASURE: string;
KEEP_ALIVE: string;
};
API_KEYS: {
OPENAI: string;
GROQ: string;
ANTHROPIC: string;
GEMINI: string;
};
API_ENDPOINTS: {
SEARXNG: string;
@ -34,12 +36,16 @@ export const getPort = () => loadConfig().GENERAL.PORT;
export const getSimilarityMeasure = () =>
loadConfig().GENERAL.SIMILARITY_MEASURE;
export const getKeepAlive = () => loadConfig().GENERAL.KEEP_ALIVE;
export const getOpenaiApiKey = () => loadConfig().API_KEYS.OPENAI;
export const getGroqApiKey = () => loadConfig().API_KEYS.GROQ;
export const getAnthropicApiKey = () => loadConfig().API_KEYS.ANTHROPIC;
export const getGeminiApiKey = () => loadConfig().API_KEYS.GEMINI;
export const getSearxngApiEndpoint = () =>
process.env.SEARXNG_API_URL || loadConfig().API_ENDPOINTS.SEARXNG;

View file

@ -1,3 +1,4 @@
import { sql } from 'drizzle-orm';
import { text, integer, sqliteTable } from 'drizzle-orm/sqlite-core';
export const messages = sqliteTable('messages', {
@ -11,9 +12,17 @@ export const messages = sqliteTable('messages', {
}),
});
interface File {
name: string;
fileId: string;
}
export const chats = sqliteTable('chats', {
id: text('id').primaryKey(),
title: text('title').notNull(),
createdAt: text('createdAt').notNull(),
focusMode: text('focusMode').notNull(),
files: text('files', { mode: 'json' })
.$type<File[]>()
.default(sql`'[]'`),
});

View file

@ -19,6 +19,8 @@ class LineOutputParser extends BaseOutputParser<string> {
lc_namespace = ['langchain', 'output_parsers', 'line_output_parser'];
async parse(text: string): Promise<string> {
text = text.trim() || '';
const regex = /^(\s*(-|\*|\d+\.\s|\d+\)\s|\u2022)\s*)+/;
const startKeyIndex = text.indexOf(`<${this.key}>`);
const endKeyIndex = text.indexOf(`</${this.key}>`);

View file

@ -19,6 +19,8 @@ class LineListOutputParser extends BaseOutputParser<string[]> {
lc_namespace = ['langchain', 'output_parsers', 'line_list_output_parser'];
async parse(text: string): Promise<string[]> {
text = text.trim() || '';
const regex = /^(\s*(-|\*|\d+\.\s|\d+\)\s|\u2022)\s*)+/;
const startKeyIndex = text.indexOf(`<${this.key}>`);
const endKeyIndex = text.indexOf(`</${this.key}>`);

View file

@ -9,12 +9,20 @@ export const loadAnthropicChatModels = async () => {
try {
const chatModels = {
'claude-3-5-sonnet-20240620': {
'claude-3-5-sonnet-20241022': {
displayName: 'Claude 3.5 Sonnet',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-5-sonnet-20240620',
model: 'claude-3-5-sonnet-20241022',
}),
},
'claude-3-5-haiku-20241022': {
displayName: 'Claude 3.5 Haiku',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-5-haiku-20241022',
}),
},
'claude-3-opus-20240229': {

View file

@ -0,0 +1,85 @@
import {
ChatGoogleGenerativeAI,
GoogleGenerativeAIEmbeddings,
} from '@langchain/google-genai';
import { getGeminiApiKey } from '../../config';
import logger from '../../utils/logger';
export const loadGeminiChatModels = async () => {
const geminiApiKey = getGeminiApiKey();
if (!geminiApiKey) return {};
try {
const chatModels = {
'gemini-1.5-flash': {
displayName: 'Gemini 1.5 Flash',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-1.5-flash',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-1.5-flash-8b': {
displayName: 'Gemini 1.5 Flash 8B',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-1.5-flash-8b',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-1.5-pro': {
displayName: 'Gemini 1.5 Pro',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-1.5-pro',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-2.0-flash-exp': {
displayName: 'Gemini 2.0 Flash Exp',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-2.0-flash-exp',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-2.0-flash-thinking-exp-01-21': {
displayName: 'Gemini 2.0 Flash Thinking Exp 01-21',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-2.0-flash-thinking-exp-01-21',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
};
return chatModels;
} catch (err) {
logger.error(`Error loading Gemini models: ${err}`);
return {};
}
};
export const loadGeminiEmbeddingsModels = async () => {
const geminiApiKey = getGeminiApiKey();
if (!geminiApiKey) return {};
try {
const embeddingModels = {
'text-embedding-004': {
displayName: 'Text Embedding',
model: new GoogleGenerativeAIEmbeddings({
apiKey: geminiApiKey,
modelName: 'text-embedding-004',
}),
},
};
return embeddingModels;
} catch (err) {
logger.error(`Error loading Gemini embeddings model: ${err}`);
return {};
}
};

View file

@ -9,6 +9,19 @@ export const loadGroqChatModels = async () => {
try {
const chatModels = {
'llama-3.3-70b-versatile': {
displayName: 'Llama 3.3 70B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.3-70b-versatile',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.2-3b-preview': {
displayName: 'Llama 3.2 3B',
model: new ChatOpenAI(
@ -22,12 +35,12 @@ export const loadGroqChatModels = async () => {
},
),
},
'llama-3.2-11b-text-preview': {
displayName: 'Llama 3.2 11B Text',
'llama-3.2-11b-vision-preview': {
displayName: 'Llama 3.2 11B Vision',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.2-11b-text-preview',
modelName: 'llama-3.2-11b-vision-preview',
temperature: 0.7,
},
{
@ -35,25 +48,12 @@ export const loadGroqChatModels = async () => {
},
),
},
'llama-3.2-90b-text-preview': {
displayName: 'Llama 3.2 90B Text',
'llama-3.2-90b-vision-preview': {
displayName: 'Llama 3.2 90B Vision',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.2-90b-text-preview',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.1-70b-versatile': {
displayName: 'Llama 3.1 70B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.1-70b-versatile',
modelName: 'llama-3.2-90b-vision-preview',
temperature: 0.7,
},
{
@ -113,19 +113,6 @@ export const loadGroqChatModels = async () => {
},
),
},
'gemma-7b-it': {
displayName: 'Gemma 7B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'gemma-7b-it',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'gemma2-9b-it': {
displayName: 'Gemma2 9B',
model: new ChatOpenAI(

View file

@ -3,18 +3,21 @@ import { loadOllamaChatModels, loadOllamaEmbeddingsModels } from './ollama';
import { loadOpenAIChatModels, loadOpenAIEmbeddingsModels } from './openai';
import { loadAnthropicChatModels } from './anthropic';
import { loadTransformersEmbeddingsModels } from './transformers';
import { loadGeminiChatModels, loadGeminiEmbeddingsModels } from './gemini';
const chatModelProviders = {
openai: loadOpenAIChatModels,
groq: loadGroqChatModels,
ollama: loadOllamaChatModels,
anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels,
};
const embeddingModelProviders = {
openai: loadOpenAIEmbeddingsModels,
local: loadTransformersEmbeddingsModels,
ollama: loadOllamaEmbeddingsModels,
gemini: loadGeminiEmbeddingsModels,
};
export const getAvailableChatModelProviders = async () => {

View file

@ -1,21 +1,23 @@
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
import { getOllamaApiEndpoint } from '../../config';
import { getKeepAlive, getOllamaApiEndpoint } from '../../config';
import logger from '../../utils/logger';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
import axios from 'axios';
export const loadOllamaChatModels = async () => {
const ollamaEndpoint = getOllamaApiEndpoint();
const keepAlive = getKeepAlive();
if (!ollamaEndpoint) return {};
try {
const response = await fetch(`${ollamaEndpoint}/api/tags`, {
const response = await axios.get(`${ollamaEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = (await response.json()) as any;
const { models: ollamaModels } = response.data;
const chatModels = ollamaModels.reduce((acc, model) => {
acc[model.model] = {
@ -24,6 +26,7 @@ export const loadOllamaChatModels = async () => {
baseUrl: ollamaEndpoint,
model: model.model,
temperature: 0.7,
keepAlive: keepAlive,
}),
};
@ -43,13 +46,13 @@ export const loadOllamaEmbeddingsModels = async () => {
if (!ollamaEndpoint) return {};
try {
const response = await fetch(`${ollamaEndpoint}/api/tags`, {
const response = await axios.get(`${ollamaEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = (await response.json()) as any;
const { models: ollamaModels } = response.data;
const embeddingsModels = ollamaModels.reduce((acc, model) => {
acc[model.model] = {

View file

@ -0,0 +1,65 @@
export const academicSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: How does stable diffusion work?
Rephrased: Stable diffusion working
2. Follow up question: What is linear algebra?
Rephrased: Linear algebra
3. Follow up question: What is the third law of thermodynamics?
Rephrased: Third law of thermodynamics
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
export const academicSearchResponsePrompt = `
You are Perplexica, an AI model skilled in web search and crafting detailed, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Your task is to provide answers that are:
- **Informative and relevant**: Thoroughly address the user's query using the given context.
- **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
- **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
- **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
- **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
### Formatting Instructions
- **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Academic', this means you will be searching for academic papers and articles on the web.
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context>
{context}
</context>
Current date & time in ISO format (UTC timezone) is: {date}.
`;

32
src/prompts/index.ts Normal file
View file

@ -0,0 +1,32 @@
import {
academicSearchResponsePrompt,
academicSearchRetrieverPrompt,
} from './academicSearch';
import {
redditSearchResponsePrompt,
redditSearchRetrieverPrompt,
} from './redditSearch';
import { webSearchResponsePrompt, webSearchRetrieverPrompt } from './webSearch';
import {
wolframAlphaSearchResponsePrompt,
wolframAlphaSearchRetrieverPrompt,
} from './wolframAlpha';
import { writingAssistantPrompt } from './writingAssistant';
import {
youtubeSearchResponsePrompt,
youtubeSearchRetrieverPrompt,
} from './youtubeSearch';
export default {
webSearchResponsePrompt,
webSearchRetrieverPrompt,
academicSearchResponsePrompt,
academicSearchRetrieverPrompt,
redditSearchResponsePrompt,
redditSearchRetrieverPrompt,
wolframAlphaSearchResponsePrompt,
wolframAlphaSearchRetrieverPrompt,
writingAssistantPrompt,
youtubeSearchResponsePrompt,
youtubeSearchRetrieverPrompt,
};

View file

@ -0,0 +1,65 @@
export const redditSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: Which company is most likely to create an AGI
Rephrased: Which company is most likely to create an AGI
2. Follow up question: Is Earth flat?
Rephrased: Is Earth flat?
3. Follow up question: Is there life on Mars?
Rephrased: Is there life on Mars?
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
export const redditSearchResponsePrompt = `
You are Perplexica, an AI model skilled in web search and crafting detailed, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Your task is to provide answers that are:
- **Informative and relevant**: Thoroughly address the user's query using the given context.
- **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
- **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
- **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
- **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
### Formatting Instructions
- **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Reddit', this means you will be searching for information, opinions and discussions on the web using Reddit.
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context>
{context}
</context>
Current date & time in ISO format (UTC timezone) is: {date}.
`;

106
src/prompts/webSearch.ts Normal file
View file

@ -0,0 +1,106 @@
export const webSearchRetrieverPrompt = `
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
If it is a smple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
There are several examples attached for your reference inside the below \`examples\` XML block
<examples>
1. Follow up question: What is the capital of France
Rephrased question:\`
<question>
Capital of france
</question>
\`
2. Hi, how are you?
Rephrased question\`
<question>
not_needed
</question>
\`
3. Follow up question: What is Docker?
Rephrased question: \`
<question>
What is Docker
</question>
\`
4. Follow up question: Can you tell me what is X from https://example.com
Rephrased question: \`
<question>
Can you tell me what is X?
</question>
<links>
https://example.com
</links>
\`
5. Follow up question: Summarize the content from https://example.com
Rephrased question: \`
<question>
summarize
</question>
<links>
https://example.com
</links>
\`
</examples>
Anything below is the part of the actual conversation and you need to use conversation and the follow-up question to rephrase the follow-up question as a standalone question based on the guidelines shared above.
<conversation>
{chat_history}
</conversation>
Follow up question: {query}
Rephrased question:
`;
export const webSearchResponsePrompt = `
You are Perplexica, an AI model skilled in web search and crafting detailed, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Your task is to provide answers that are:
- **Informative and relevant**: Thoroughly address the user's query using the given context.
- **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
- **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
- **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
- **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
### Formatting Instructions
- **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context>
{context}
</context>
Current date & time in ISO format (UTC timezone) is: {date}.
`;

View file

@ -0,0 +1,65 @@
export const wolframAlphaSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: What is the atomic radius of S?
Rephrased: Atomic radius of S
2. Follow up question: What is linear algebra?
Rephrased: Linear algebra
3. Follow up question: What is the third law of thermodynamics?
Rephrased: Third law of thermodynamics
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
export const wolframAlphaSearchResponsePrompt = `
You are Perplexica, an AI model skilled in web search and crafting detailed, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Your task is to provide answers that are:
- **Informative and relevant**: Thoroughly address the user's query using the given context.
- **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
- **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
- **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
- **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
### Formatting Instructions
- **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Wolfram Alpha', this means you will be searching for information on the web using Wolfram Alpha. It is a computational knowledge engine that can answer factual queries and perform computations.
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context>
{context}
</context>
Current date & time in ISO format (UTC timezone) is: {date}.
`;

View file

@ -0,0 +1,13 @@
export const writingAssistantPrompt = `
You are Perplexica, an AI model who is expert at searching the web and answering user's queries. You are currently set on focus mode 'Writing Assistant', this means you will be helping the user write a response to a given query.
Since you are a writing assistant, you would not perform web searches. If you think you lack information to answer the query, you can ask the user for more information or suggest them to switch to a different focus mode.
You will be shared a context that can contain information from files user has uploaded to get answers from. You will have to generate answers upon that.
You have to cite the answer using [number] notation. You must cite the sentences with their relevent context number. You must cite each and every part of the answer so the user can know where the information is coming from.
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
<context>
{context}
</context>
`;

View file

@ -0,0 +1,65 @@
export const youtubeSearchRetrieverPrompt = `
You will be given a conversation below and a follow up question. You need to rephrase the follow-up question if needed so it is a standalone question that can be used by the LLM to search the web for information.
If it is a writing task or a simple hi, hello rather than a question, you need to return \`not_needed\` as the response.
Example:
1. Follow up question: How does an A.C work?
Rephrased: A.C working
2. Follow up question: Linear algebra explanation video
Rephrased: What is linear algebra?
3. Follow up question: What is theory of relativity?
Rephrased: What is theory of relativity?
Conversation:
{chat_history}
Follow up question: {query}
Rephrased question:
`;
export const youtubeSearchResponsePrompt = `
You are Perplexica, an AI model skilled in web search and crafting detailed, engaging, and well-structured answers. You excel at summarizing web pages and extracting relevant information to create professional, blog-style responses.
Your task is to provide answers that are:
- **Informative and relevant**: Thoroughly address the user's query using the given context.
- **Well-structured**: Include clear headings and subheadings, and use a professional tone to present information concisely and logically.
- **Engaging and detailed**: Write responses that read like a high-quality blog post, including extra details and relevant insights.
- **Cited and credible**: Use inline citations with [number] notation to refer to the context source(s) for each fact or detail included.
- **Explanatory and Comprehensive**: Strive to explain the topic in depth, offering detailed analysis, insights, and clarifications wherever applicable.
### Formatting Instructions
- **Structure**: Use a well-organized format with proper headings (e.g., "## Example heading 1" or "## Example heading 2"). Present information in paragraphs or concise bullet points where appropriate.
- **Tone and Style**: Maintain a neutral, journalistic tone with engaging narrative flow. Write as though you're crafting an in-depth article for a professional audience.
- **Markdown Usage**: Format your response with Markdown for clarity. Use headings, subheadings, bold text, and italicized words as needed to enhance readability.
- **Length and Depth**: Provide comprehensive coverage of the topic. Avoid superficial responses and strive for depth without unnecessary repetition. Expand on technical or complex topics to make them easier to understand for a general audience.
- **No main heading/title**: Start your response directly with the introduction unless asked to provide a specific title.
- **Conclusion or Summary**: Include a concluding paragraph that synthesizes the provided information or suggests potential next steps, where appropriate.
### Citation Requirements
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`.
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context.
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
- Always prioritize credibility and accuracy by linking all statements back to their respective context sources.
- Avoid citing unsupported assumptions or personal interpretations; if no source supports a statement, clearly indicate the limitation.
### Special Instructions
- If the query involves technical, historical, or complex topics, provide detailed background and explanatory sections to ensure clarity.
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Youtube', this means you will be searching for videos on the web using Youtube and providing information based on the video's transcrip
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.
- Provide explanations or historical context as needed to enhance understanding.
- End with a conclusion or overall perspective if relevant.
<context>
{context}
</context>
Current date & time in ISO format (UTC timezone) is: {date}.
`;

View file

@ -7,6 +7,7 @@ import {
getGroqApiKey,
getOllamaApiEndpoint,
getAnthropicApiKey,
getGeminiApiKey,
getOpenaiApiKey,
updateConfig,
} from '../config';
@ -52,6 +53,7 @@ router.get('/', async (_, res) => {
config['ollamaApiUrl'] = getOllamaApiEndpoint();
config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey();
config['geminiApiKey'] = getGeminiApiKey();
res.status(200).json(config);
} catch (err: any) {
@ -68,6 +70,7 @@ router.post('/', async (req, res) => {
OPENAI: config.openaiApiKey,
GROQ: config.groqApiKey,
ANTHROPIC: config.anthropicApiKey,
GEMINI: config.geminiApiKey,
},
API_ENDPOINTS: {
OLLAMA: config.ollamaApiUrl,

View file

@ -1,17 +1,31 @@
import express from 'express';
import handleImageSearch from '../agents/imageSearchAgent';
import handleImageSearch from '../chains/imageSearchAgent';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { getAvailableChatModelProviders } from '../lib/providers';
import { HumanMessage, AIMessage } from '@langchain/core/messages';
import logger from '../utils/logger';
import { ChatOpenAI } from '@langchain/openai';
const router = express.Router();
interface ChatModel {
provider: string;
model: string;
customOpenAIBaseURL?: string;
customOpenAIKey?: string;
}
interface ImageSearchBody {
query: string;
chatHistory: any[];
chatModel?: ChatModel;
}
router.post('/', async (req, res) => {
try {
let { query, chat_history, chat_model_provider, chat_model } = req.body;
let body: ImageSearchBody = req.body;
chat_history = chat_history.map((msg: any) => {
const chatHistory = body.chatHistory.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
@ -19,22 +33,50 @@ router.post('/', async (req, res) => {
}
});
const chatModels = await getAvailableChatModelProviders();
const provider = chat_model_provider ?? Object.keys(chatModels)[0];
const chatModel = chat_model ?? Object.keys(chatModels[provider])[0];
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
body.chatModel?.provider || Object.keys(chatModelProviders)[0];
const chatModel =
body.chatModel?.model ||
Object.keys(chatModelProviders[chatModelProvider])[0];
let llm: BaseChatModel | undefined;
if (chatModels[provider] && chatModels[provider][chatModel]) {
llm = chatModels[provider][chatModel].model as BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
if (
!body.chatModel?.customOpenAIBaseURL ||
!body.chatModel?.customOpenAIKey
) {
return res
.status(400)
.json({ message: 'Missing custom OpenAI base URL or key' });
}
llm = new ChatOpenAI({
modelName: body.chatModel.model,
openAIApiKey: body.chatModel.customOpenAIKey,
temperature: 0.7,
configuration: {
baseURL: body.chatModel.customOpenAIBaseURL,
},
}) as unknown as BaseChatModel;
} else if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel]
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
}
if (!llm) {
res.status(500).json({ message: 'Invalid LLM model selected' });
return;
return res.status(400).json({ message: 'Invalid model selected' });
}
const images = await handleImageSearch({ query, chat_history }, llm);
const images = await handleImageSearch(
{ query: body.query, chat_history: chatHistory },
llm,
);
res.status(200).json({ images });
} catch (err) {

View file

@ -7,6 +7,7 @@ import suggestionsRouter from './suggestions';
import chatsRouter from './chats';
import searchRouter from './search';
import discoverRouter from './discover';
import uploadsRouter from './uploads';
const router = express.Router();
@ -18,5 +19,6 @@ router.use('/suggestions', suggestionsRouter);
router.use('/chats', chatsRouter);
router.use('/search', searchRouter);
router.use('/discover', discoverRouter);
router.use('/uploads', uploadsRouter);
export default router;

View file

@ -1,7 +1,7 @@
import express from 'express';
import logger from '../utils/logger';
import { BaseChatModel } from 'langchain/chat_models/base';
import { Embeddings } from 'langchain/embeddings/base';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import { ChatOpenAI } from '@langchain/openai';
import {
getAvailableChatModelProviders,
@ -9,6 +9,7 @@ import {
} from '../lib/providers';
import { searchHandlers } from '../websocket/messageHandler';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { MetaSearchAgentType } from '../search/metaSearchAgent';
const router = express.Router();
@ -115,18 +116,19 @@ router.post('/', async (req, res) => {
return res.status(400).json({ message: 'Invalid model selected' });
}
const searchHandler = searchHandlers[body.focusMode];
const searchHandler: MetaSearchAgentType = searchHandlers[body.focusMode];
if (!searchHandler) {
return res.status(400).json({ message: 'Invalid focus mode' });
}
const emitter = searchHandler(
const emitter = await searchHandler.searchAndAnswer(
body.query,
history,
llm,
embeddings,
body.optimizationMode,
[],
);
let message = '';

View file

@ -1,17 +1,30 @@
import express from 'express';
import generateSuggestions from '../agents/suggestionGeneratorAgent';
import generateSuggestions from '../chains/suggestionGeneratorAgent';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { getAvailableChatModelProviders } from '../lib/providers';
import { HumanMessage, AIMessage } from '@langchain/core/messages';
import logger from '../utils/logger';
import { ChatOpenAI } from '@langchain/openai';
const router = express.Router();
interface ChatModel {
provider: string;
model: string;
customOpenAIBaseURL?: string;
customOpenAIKey?: string;
}
interface SuggestionsBody {
chatHistory: any[];
chatModel?: ChatModel;
}
router.post('/', async (req, res) => {
try {
let { chat_history, chat_model, chat_model_provider } = req.body;
let body: SuggestionsBody = req.body;
chat_history = chat_history.map((msg: any) => {
const chatHistory = body.chatHistory.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
@ -19,22 +32,50 @@ router.post('/', async (req, res) => {
}
});
const chatModels = await getAvailableChatModelProviders();
const provider = chat_model_provider ?? Object.keys(chatModels)[0];
const chatModel = chat_model ?? Object.keys(chatModels[provider])[0];
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
body.chatModel?.provider || Object.keys(chatModelProviders)[0];
const chatModel =
body.chatModel?.model ||
Object.keys(chatModelProviders[chatModelProvider])[0];
let llm: BaseChatModel | undefined;
if (chatModels[provider] && chatModels[provider][chatModel]) {
llm = chatModels[provider][chatModel].model as BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
if (
!body.chatModel?.customOpenAIBaseURL ||
!body.chatModel?.customOpenAIKey
) {
return res
.status(400)
.json({ message: 'Missing custom OpenAI base URL or key' });
}
llm = new ChatOpenAI({
modelName: body.chatModel.model,
openAIApiKey: body.chatModel.customOpenAIKey,
temperature: 0.7,
configuration: {
baseURL: body.chatModel.customOpenAIBaseURL,
},
}) as unknown as BaseChatModel;
} else if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel]
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
}
if (!llm) {
res.status(500).json({ message: 'Invalid LLM model selected' });
return;
return res.status(400).json({ message: 'Invalid model selected' });
}
const suggestions = await generateSuggestions({ chat_history }, llm);
const suggestions = await generateSuggestions(
{ chat_history: chatHistory },
llm,
);
res.status(200).json({ suggestions: suggestions });
} catch (err) {

151
src/routes/uploads.ts Normal file
View file

@ -0,0 +1,151 @@
import express from 'express';
import logger from '../utils/logger';
import multer from 'multer';
import path from 'path';
import crypto from 'crypto';
import fs from 'fs';
import { Embeddings } from '@langchain/core/embeddings';
import { getAvailableEmbeddingModelProviders } from '../lib/providers';
import { PDFLoader } from '@langchain/community/document_loaders/fs/pdf';
import { DocxLoader } from '@langchain/community/document_loaders/fs/docx';
import { RecursiveCharacterTextSplitter } from '@langchain/textsplitters';
import { Document } from 'langchain/document';
const router = express.Router();
const splitter = new RecursiveCharacterTextSplitter({
chunkSize: 500,
chunkOverlap: 100,
});
const storage = multer.diskStorage({
destination: (req, file, cb) => {
cb(null, path.join(process.cwd(), './uploads'));
},
filename: (req, file, cb) => {
const splitedFileName = file.originalname.split('.');
const fileExtension = splitedFileName[splitedFileName.length - 1];
if (!['pdf', 'docx', 'txt'].includes(fileExtension)) {
return cb(new Error('File type is not supported'), '');
}
cb(null, `${crypto.randomBytes(16).toString('hex')}.${fileExtension}`);
},
});
const upload = multer({ storage });
router.post(
'/',
upload.fields([
{ name: 'files' },
{ name: 'embedding_model', maxCount: 1 },
{ name: 'embedding_model_provider', maxCount: 1 },
]),
async (req, res) => {
try {
const { embedding_model, embedding_model_provider } = req.body;
if (!embedding_model || !embedding_model_provider) {
res
.status(400)
.json({ message: 'Missing embedding model or provider' });
return;
}
const embeddingModels = await getAvailableEmbeddingModelProviders();
const provider =
embedding_model_provider ?? Object.keys(embeddingModels)[0];
const embeddingModel: Embeddings =
embedding_model ?? Object.keys(embeddingModels[provider])[0];
let embeddingsModel: Embeddings | undefined;
if (
embeddingModels[provider] &&
embeddingModels[provider][embeddingModel]
) {
embeddingsModel = embeddingModels[provider][embeddingModel].model as
| Embeddings
| undefined;
}
if (!embeddingsModel) {
res.status(400).json({ message: 'Invalid LLM model selected' });
return;
}
const files = req.files['files'] as Express.Multer.File[];
if (!files || files.length === 0) {
res.status(400).json({ message: 'No files uploaded' });
return;
}
await Promise.all(
files.map(async (file) => {
let docs: Document[] = [];
if (file.mimetype === 'application/pdf') {
const loader = new PDFLoader(file.path);
docs = await loader.load();
} else if (
file.mimetype ===
'application/vnd.openxmlformats-officedocument.wordprocessingml.document'
) {
const loader = new DocxLoader(file.path);
docs = await loader.load();
} else if (file.mimetype === 'text/plain') {
const text = fs.readFileSync(file.path, 'utf-8');
docs = [
new Document({
pageContent: text,
metadata: {
title: file.originalname,
},
}),
];
}
const splitted = await splitter.splitDocuments(docs);
const json = JSON.stringify({
title: file.originalname,
contents: splitted.map((doc) => doc.pageContent),
});
const pathToSave = file.path.replace(/\.\w+$/, '-extracted.json');
fs.writeFileSync(pathToSave, json);
const embeddings = await embeddingsModel.embedDocuments(
splitted.map((doc) => doc.pageContent),
);
const embeddingsJSON = JSON.stringify({
title: file.originalname,
embeddings: embeddings,
});
const pathToSaveEmbeddings = file.path.replace(
/\.\w+$/,
'-embeddings.json',
);
fs.writeFileSync(pathToSaveEmbeddings, embeddingsJSON);
}),
);
res.status(200).json({
files: files.map((file) => {
return {
fileName: file.originalname,
fileExtension: file.filename.split('.').pop(),
fileId: file.filename.replace(/\.\w+$/, ''),
};
}),
});
} catch (err: any) {
logger.error(`Error in uploading file results: ${err.message}`);
res.status(500).json({ message: 'An error has occurred.' });
}
},
);
export default router;

View file

@ -3,15 +3,29 @@ import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { getAvailableChatModelProviders } from '../lib/providers';
import { HumanMessage, AIMessage } from '@langchain/core/messages';
import logger from '../utils/logger';
import handleVideoSearch from '../agents/videoSearchAgent';
import handleVideoSearch from '../chains/videoSearchAgent';
import { ChatOpenAI } from '@langchain/openai';
const router = express.Router();
interface ChatModel {
provider: string;
model: string;
customOpenAIBaseURL?: string;
customOpenAIKey?: string;
}
interface VideoSearchBody {
query: string;
chatHistory: any[];
chatModel?: ChatModel;
}
router.post('/', async (req, res) => {
try {
let { query, chat_history, chat_model_provider, chat_model } = req.body;
let body: VideoSearchBody = req.body;
chat_history = chat_history.map((msg: any) => {
const chatHistory = body.chatHistory.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
@ -19,22 +33,50 @@ router.post('/', async (req, res) => {
}
});
const chatModels = await getAvailableChatModelProviders();
const provider = chat_model_provider ?? Object.keys(chatModels)[0];
const chatModel = chat_model ?? Object.keys(chatModels[provider])[0];
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
body.chatModel?.provider || Object.keys(chatModelProviders)[0];
const chatModel =
body.chatModel?.model ||
Object.keys(chatModelProviders[chatModelProvider])[0];
let llm: BaseChatModel | undefined;
if (chatModels[provider] && chatModels[provider][chatModel]) {
llm = chatModels[provider][chatModel].model as BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
if (
!body.chatModel?.customOpenAIBaseURL ||
!body.chatModel?.customOpenAIKey
) {
return res
.status(400)
.json({ message: 'Missing custom OpenAI base URL or key' });
}
llm = new ChatOpenAI({
modelName: body.chatModel.model,
openAIApiKey: body.chatModel.customOpenAIKey,
temperature: 0.7,
configuration: {
baseURL: body.chatModel.customOpenAIBaseURL,
},
}) as unknown as BaseChatModel;
} else if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel]
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
}
if (!llm) {
res.status(500).json({ message: 'Invalid LLM model selected' });
return;
return res.status(400).json({ message: 'Invalid model selected' });
}
const videos = await handleVideoSearch({ chat_history, query }, llm);
const videos = await handleVideoSearch(
{ chat_history: chatHistory, query: body.query },
llm,
);
res.status(200).json({ videos });
} catch (err) {

View file

@ -0,0 +1,494 @@
import { ChatOpenAI } from '@langchain/openai';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import {
ChatPromptTemplate,
MessagesPlaceholder,
PromptTemplate,
} from '@langchain/core/prompts';
import {
RunnableLambda,
RunnableMap,
RunnableSequence,
} from '@langchain/core/runnables';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import LineListOutputParser from '../lib/outputParsers/listLineOutputParser';
import LineOutputParser from '../lib/outputParsers/lineOutputParser';
import { getDocumentsFromLinks } from '../utils/documents';
import { Document } from 'langchain/document';
import { searchSearxng } from '../lib/searxng';
import path from 'path';
import fs from 'fs';
import computeSimilarity from '../utils/computeSimilarity';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import { StreamEvent } from '@langchain/core/tracers/log_stream';
import { IterableReadableStream } from '@langchain/core/utils/stream';
export interface MetaSearchAgentType {
searchAndAnswer: (
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
fileIds: string[],
) => Promise<eventEmitter>;
}
interface Config {
searchWeb: boolean;
rerank: boolean;
summarizer: boolean;
rerankThreshold: number;
queryGeneratorPrompt: string;
responsePrompt: string;
activeEngines: string[];
}
type BasicChainInput = {
chat_history: BaseMessage[];
query: string;
};
class MetaSearchAgent implements MetaSearchAgentType {
private config: Config;
private strParser = new StringOutputParser();
constructor(config: Config) {
this.config = config;
}
private async createSearchRetrieverChain(llm: BaseChatModel) {
(llm as unknown as ChatOpenAI).temperature = 0;
return RunnableSequence.from([
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
llm,
this.strParser,
RunnableLambda.from(async (input: string) => {
const linksOutputParser = new LineListOutputParser({
key: 'links',
});
const questionOutputParser = new LineOutputParser({
key: 'question',
});
const links = await linksOutputParser.parse(input);
let question = this.config.summarizer
? await questionOutputParser.parse(input)
: input;
if (question === 'not_needed') {
return { query: '', docs: [] };
}
if (links.length > 0) {
if (question.length === 0) {
question = 'summarize';
}
let docs = [];
const linkDocs = await getDocumentsFromLinks({ links });
const docGroups: Document[] = [];
linkDocs.map((doc) => {
const URLDocExists = docGroups.find(
(d) =>
d.metadata.url === doc.metadata.url &&
d.metadata.totalDocs < 10,
);
if (!URLDocExists) {
docGroups.push({
...doc,
metadata: {
...doc.metadata,
totalDocs: 1,
},
});
}
const docIndex = docGroups.findIndex(
(d) =>
d.metadata.url === doc.metadata.url &&
d.metadata.totalDocs < 10,
);
if (docIndex !== -1) {
docGroups[docIndex].pageContent =
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
docGroups[docIndex].metadata.totalDocs += 1;
}
});
await Promise.all(
docGroups.map(async (doc) => {
const res = await llm.invoke(`
You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
- **Journalistic tone**: The summary should sound professional and journalistic, not too casual or vague.
- **Thorough and detailed**: Ensure that every key point from the text is captured and that the summary directly answers the query.
- **Not too lengthy, but detailed**: The summary should be informative but not excessively long. Focus on providing detailed information in a concise format.
The text will be shared inside the \`text\` XML tag, and the query inside the \`query\` XML tag.
<example>
1. \`<text>
Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called containers.
It was first released in 2013 and is developed by Docker, Inc. Docker is designed to make it easier to create, deploy, and run applications
by using containers.
</text>
<query>
What is Docker and how does it work?
</query>
Response:
Docker is a revolutionary platform-as-a-service product developed by Docker, Inc., that uses container technology to make application
deployment more efficient. It allows developers to package their software with all necessary dependencies, making it easier to run in
any environment. Released in 2013, Docker has transformed the way applications are built, deployed, and managed.
\`
2. \`<text>
The theory of relativity, or simply relativity, encompasses two interrelated theories of Albert Einstein: special relativity and general
relativity. However, the word "relativity" is sometimes used in reference to Galilean invariance. The term "theory of relativity" was based
on the expression "relative theory" used by Max Planck in 1906. The theory of relativity usually encompasses two interrelated theories by
Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity.
General relativity explains the law of gravitation and its relation to other forces of nature. It applies to the cosmological and astrophysical
realm, including astronomy.
</text>
<query>
summarize
</query>
Response:
The theory of relativity, developed by Albert Einstein, encompasses two main theories: special relativity and general relativity. Special
relativity applies to all physical phenomena in the absence of gravity, while general relativity explains the law of gravitation and its
relation to other forces of nature. The theory of relativity is based on the concept of "relative theory," as introduced by Max Planck in
1906. It is a fundamental theory in physics that has revolutionized our understanding of the universe.
\`
</example>
Everything below is the actual data you will be working with. Good luck!
<query>
${question}
</query>
<text>
${doc.pageContent}
</text>
Make sure to answer the query in the summary.
`);
const document = new Document({
pageContent: res.content as string,
metadata: {
title: doc.metadata.title,
url: doc.metadata.url,
},
});
docs.push(document);
}),
);
return { query: question, docs: docs };
} else {
const res = await searchSearxng(question, {
language: 'en',
engines: this.config.activeEngines,
});
const documents = res.results.map(
(result) =>
new Document({
pageContent:
result.content ||
(this.config.activeEngines.includes('youtube')
? result.title
: '') /* Todo: Implement transcript grabbing using Youtubei (source: https://www.npmjs.com/package/youtubei) */,
metadata: {
title: result.title,
url: result.url,
...(result.img_src && { img_src: result.img_src }),
},
}),
);
return { query: question, docs: documents };
}
}),
]);
}
private async createAnsweringChain(
llm: BaseChatModel,
fileIds: string[],
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
) {
return RunnableSequence.from([
RunnableMap.from({
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
date: () => new Date().toISOString(),
context: RunnableLambda.from(async (input: BasicChainInput) => {
const processedHistory = formatChatHistoryAsString(
input.chat_history,
);
let docs: Document[] | null = null;
let query = input.query;
if (this.config.searchWeb) {
const searchRetrieverChain =
await this.createSearchRetrieverChain(llm);
const searchRetrieverResult = await searchRetrieverChain.invoke({
chat_history: processedHistory,
query,
});
query = searchRetrieverResult.query;
docs = searchRetrieverResult.docs;
}
const sortedDocs = await this.rerankDocs(
query,
docs ?? [],
fileIds,
embeddings,
optimizationMode,
);
return sortedDocs;
})
.withConfig({
runName: 'FinalSourceRetriever',
})
.pipe(this.processDocs),
}),
ChatPromptTemplate.fromMessages([
['system', this.config.responsePrompt],
new MessagesPlaceholder('chat_history'),
['user', '{query}'],
]),
llm,
this.strParser,
]).withConfig({
runName: 'FinalResponseGenerator',
});
}
private async rerankDocs(
query: string,
docs: Document[],
fileIds: string[],
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
) {
if (docs.length === 0 && fileIds.length === 0) {
return docs;
}
const filesData = fileIds
.map((file) => {
const filePath = path.join(process.cwd(), 'uploads', file);
const contentPath = filePath + '-extracted.json';
const embeddingsPath = filePath + '-embeddings.json';
const content = JSON.parse(fs.readFileSync(contentPath, 'utf8'));
const embeddings = JSON.parse(fs.readFileSync(embeddingsPath, 'utf8'));
const fileSimilaritySearchObject = content.contents.map(
(c: string, i) => {
return {
fileName: content.title,
content: c,
embeddings: embeddings.embeddings[i],
};
},
);
return fileSimilaritySearchObject;
})
.flat();
if (query.toLocaleLowerCase() === 'summarize') {
return docs.slice(0, 15);
}
const docsWithContent = docs.filter(
(doc) => doc.pageContent && doc.pageContent.length > 0,
);
if (optimizationMode === 'speed' || this.config.rerank === false) {
if (filesData.length > 0) {
const [queryEmbedding] = await Promise.all([
embeddings.embedQuery(query),
]);
const fileDocs = filesData.map((fileData) => {
return new Document({
pageContent: fileData.content,
metadata: {
title: fileData.fileName,
url: `File`,
},
});
});
const similarity = filesData.map((fileData, i) => {
const sim = computeSimilarity(queryEmbedding, fileData.embeddings);
return {
index: i,
similarity: sim,
};
});
let sortedDocs = similarity
.filter(
(sim) => sim.similarity > (this.config.rerankThreshold ?? 0.3),
)
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.map((sim) => fileDocs[sim.index]);
sortedDocs =
docsWithContent.length > 0 ? sortedDocs.slice(0, 8) : sortedDocs;
return [
...sortedDocs,
...docsWithContent.slice(0, 15 - sortedDocs.length),
];
} else {
return docsWithContent.slice(0, 15);
}
} else if (optimizationMode === 'balanced') {
const [docEmbeddings, queryEmbedding] = await Promise.all([
embeddings.embedDocuments(
docsWithContent.map((doc) => doc.pageContent),
),
embeddings.embedQuery(query),
]);
docsWithContent.push(
...filesData.map((fileData) => {
return new Document({
pageContent: fileData.content,
metadata: {
title: fileData.fileName,
url: `File`,
},
});
}),
);
docEmbeddings.push(...filesData.map((fileData) => fileData.embeddings));
const similarity = docEmbeddings.map((docEmbedding, i) => {
const sim = computeSimilarity(queryEmbedding, docEmbedding);
return {
index: i,
similarity: sim,
};
});
const sortedDocs = similarity
.filter((sim) => sim.similarity > (this.config.rerankThreshold ?? 0.3))
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 15)
.map((sim) => docsWithContent[sim.index]);
return sortedDocs;
}
}
private processDocs(docs: Document[]) {
return docs
.map(
(_, index) =>
`${index + 1}. ${docs[index].metadata.title} ${docs[index].pageContent}`,
)
.join('\n');
}
private async handleStream(
stream: IterableReadableStream<StreamEvent>,
emitter: eventEmitter,
) {
for await (const event of stream) {
if (
event.event === 'on_chain_end' &&
event.name === 'FinalSourceRetriever'
) {
``;
emitter.emit(
'data',
JSON.stringify({ type: 'sources', data: event.data.output }),
);
}
if (
event.event === 'on_chain_stream' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit(
'data',
JSON.stringify({ type: 'response', data: event.data.chunk }),
);
}
if (
event.event === 'on_chain_end' &&
event.name === 'FinalResponseGenerator'
) {
emitter.emit('end');
}
}
}
async searchAndAnswer(
message: string,
history: BaseMessage[],
llm: BaseChatModel,
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
fileIds: string[],
) {
const emitter = new eventEmitter();
const answeringChain = await this.createAnsweringChain(
llm,
fileIds,
embeddings,
optimizationMode,
);
const stream = answeringChain.streamEvents(
{
chat_history: history,
query: message,
},
{
version: 'v1',
},
);
this.handleStream(stream, emitter);
return emitter;
}
}
export default MetaSearchAgent;

View file

@ -3,7 +3,7 @@ import { htmlToText } from 'html-to-text';
import { RecursiveCharacterTextSplitter } from 'langchain/text_splitter';
import { Document } from '@langchain/core/documents';
import pdfParse from 'pdf-parse';
import logger from '../utils/logger';
import logger from './logger';
export const getDocumentsFromLinks = async ({ links }: { links: string[] }) => {
const splitter = new RecursiveCharacterTextSplitter();

17
src/utils/files.ts Normal file
View file

@ -0,0 +1,17 @@
import path from 'path';
import fs from 'fs';
export const getFileDetails = (fileId: string) => {
const fileLoc = path.join(
process.cwd(),
'./uploads',
fileId + '-extracted.json',
);
const parsedFile = JSON.parse(fs.readFileSync(fileLoc, 'utf8'));
return {
name: parsedFile.title,
fileId: fileId,
};
};

View file

@ -1,18 +1,17 @@
import { EventEmitter, WebSocket } from 'ws';
import { BaseMessage, AIMessage, HumanMessage } from '@langchain/core/messages';
import handleWebSearch from '../agents/webSearchAgent';
import handleAcademicSearch from '../agents/academicSearchAgent';
import handleWritingAssistant from '../agents/writingAssistant';
import handleWolframAlphaSearch from '../agents/wolframAlphaSearchAgent';
import handleYoutubeSearch from '../agents/youtubeSearchAgent';
import handleRedditSearch from '../agents/redditSearchAgent';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import logger from '../utils/logger';
import db from '../db';
import { chats, messages } from '../db/schema';
import { eq } from 'drizzle-orm';
import { chats, messages as messagesSchema } from '../db/schema';
import { eq, asc, gt, and } from 'drizzle-orm';
import crypto from 'crypto';
import { getFileDetails } from '../utils/files';
import MetaSearchAgent, {
MetaSearchAgentType,
} from '../search/metaSearchAgent';
import prompts from '../prompts';
type Message = {
messageId: string;
@ -22,19 +21,68 @@ type Message = {
type WSMessage = {
message: Message;
optimizationMode: string;
optimizationMode: 'speed' | 'balanced' | 'quality';
type: string;
focusMode: string;
history: Array<[string, string]>;
files: Array<string>;
};
export const searchHandlers = {
webSearch: handleWebSearch,
academicSearch: handleAcademicSearch,
writingAssistant: handleWritingAssistant,
wolframAlphaSearch: handleWolframAlphaSearch,
youtubeSearch: handleYoutubeSearch,
redditSearch: handleRedditSearch,
webSearch: new MetaSearchAgent({
activeEngines: [],
queryGeneratorPrompt: prompts.webSearchRetrieverPrompt,
responsePrompt: prompts.webSearchResponsePrompt,
rerank: true,
rerankThreshold: 0.3,
searchWeb: true,
summarizer: true,
}),
academicSearch: new MetaSearchAgent({
activeEngines: ['arxiv', 'google scholar', 'pubmed'],
queryGeneratorPrompt: prompts.academicSearchRetrieverPrompt,
responsePrompt: prompts.academicSearchResponsePrompt,
rerank: true,
rerankThreshold: 0,
searchWeb: true,
summarizer: false,
}),
writingAssistant: new MetaSearchAgent({
activeEngines: [],
queryGeneratorPrompt: '',
responsePrompt: prompts.writingAssistantPrompt,
rerank: true,
rerankThreshold: 0,
searchWeb: false,
summarizer: false,
}),
wolframAlphaSearch: new MetaSearchAgent({
activeEngines: ['wolframalpha'],
queryGeneratorPrompt: prompts.wolframAlphaSearchRetrieverPrompt,
responsePrompt: prompts.wolframAlphaSearchResponsePrompt,
rerank: false,
rerankThreshold: 0,
searchWeb: true,
summarizer: false,
}),
youtubeSearch: new MetaSearchAgent({
activeEngines: ['youtube'],
queryGeneratorPrompt: prompts.youtubeSearchRetrieverPrompt,
responsePrompt: prompts.youtubeSearchResponsePrompt,
rerank: true,
rerankThreshold: 0.3,
searchWeb: true,
summarizer: false,
}),
redditSearch: new MetaSearchAgent({
activeEngines: ['reddit'],
queryGeneratorPrompt: prompts.redditSearchRetrieverPrompt,
responsePrompt: prompts.redditSearchResponsePrompt,
rerank: true,
rerankThreshold: 0.3,
searchWeb: true,
summarizer: false,
}),
};
const handleEmitterEvents = (
@ -71,7 +119,7 @@ const handleEmitterEvents = (
emitter.on('end', () => {
ws.send(JSON.stringify({ type: 'messageEnd', messageId: messageId }));
db.insert(messages)
db.insert(messagesSchema)
.values({
content: recievedMessage,
chatId: chatId,
@ -106,7 +154,14 @@ export const handleMessage = async (
const parsedWSMessage = JSON.parse(message) as WSMessage;
const parsedMessage = parsedWSMessage.message;
const id = crypto.randomBytes(7).toString('hex');
if (parsedWSMessage.files.length > 0) {
/* TODO: Implement uploads in other classes/single meta class system*/
parsedWSMessage.focusMode = 'webSearch';
}
const humanMessageId =
parsedMessage.messageId ?? crypto.randomBytes(7).toString('hex');
const aiMessageId = crypto.randomBytes(7).toString('hex');
if (!parsedMessage.content)
return ws.send(
@ -130,18 +185,21 @@ export const handleMessage = async (
});
if (parsedWSMessage.type === 'message') {
const handler = searchHandlers[parsedWSMessage.focusMode];
const handler: MetaSearchAgentType =
searchHandlers[parsedWSMessage.focusMode];
if (handler) {
const emitter = handler(
try {
const emitter = await handler.searchAndAnswer(
parsedMessage.content,
history,
llm,
embeddings,
parsedWSMessage.optimizationMode,
parsedWSMessage.files,
);
handleEmitterEvents(emitter, ws, id, parsedMessage.chatId);
handleEmitterEvents(emitter, ws, aiMessageId, parsedMessage.chatId);
const chat = await db.query.chats.findFirst({
where: eq(chats.id, parsedMessage.chatId),
@ -155,22 +213,42 @@ export const handleMessage = async (
title: parsedMessage.content,
createdAt: new Date().toString(),
focusMode: parsedWSMessage.focusMode,
files: parsedWSMessage.files.map(getFileDetails),
})
.execute();
}
const messageExists = await db.query.messages.findFirst({
where: eq(messagesSchema.messageId, humanMessageId),
});
if (!messageExists) {
await db
.insert(messages)
.insert(messagesSchema)
.values({
content: parsedMessage.content,
chatId: parsedMessage.chatId,
messageId: id,
messageId: humanMessageId,
role: 'user',
metadata: JSON.stringify({
createdAt: new Date(),
}),
})
.execute();
} else {
await db
.delete(messagesSchema)
.where(
and(
gt(messagesSchema.id, messageExists.id),
eq(messagesSchema.chatId, parsedMessage.chatId),
),
)
.execute();
}
} catch (err) {
console.log(err);
}
} else {
ws.send(
JSON.stringify({

View file

@ -83,6 +83,7 @@ const Page = () => {
href={`/?q=Summary: ${item.url}`}
key={i}
className="max-w-sm rounded-lg overflow-hidden bg-light-secondary dark:bg-dark-secondary hover:-translate-y-[1px] transition duration-200"
target="_blank"
>
<img
className="object-cover w-full aspect-video"

View file

@ -2,7 +2,7 @@
import { Fragment, useEffect, useRef, useState } from 'react';
import MessageInput from './MessageInput';
import { Message } from './ChatWindow';
import { File, Message } from './ChatWindow';
import MessageBox from './MessageBox';
import MessageBoxLoading from './MessageBoxLoading';
@ -12,12 +12,20 @@ const Chat = ({
sendMessage,
messageAppeared,
rewrite,
fileIds,
setFileIds,
files,
setFiles,
}: {
messages: Message[];
sendMessage: (message: string) => void;
loading: boolean;
messageAppeared: boolean;
rewrite: (messageId: string) => void;
fileIds: string[];
setFileIds: (fileIds: string[]) => void;
files: File[];
setFiles: (files: File[]) => void;
}) => {
const [dividerWidth, setDividerWidth] = useState(0);
const dividerRef = useRef<HTMLDivElement | null>(null);
@ -78,7 +86,14 @@ const Chat = ({
className="bottom-24 lg:bottom-10 fixed z-40"
style={{ width: dividerWidth }}
>
<MessageInput loading={loading} sendMessage={sendMessage} />
<MessageInput
loading={loading}
sendMessage={sendMessage}
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
/>
</div>
)}
</div>

View file

@ -9,7 +9,9 @@ import crypto from 'crypto';
import { toast } from 'sonner';
import { useSearchParams } from 'next/navigation';
import { getSuggestions } from '@/lib/actions';
import Error from 'next/error';
import { Settings } from 'lucide-react';
import SettingsDialog from './SettingsDialog';
import NextError from 'next/error';
export type Message = {
messageId: string;
@ -21,22 +23,49 @@ export type Message = {
sources?: Document[];
};
export interface File {
fileName: string;
fileExtension: string;
fileId: string;
}
const useSocket = (
url: string,
setIsWSReady: (ready: boolean) => void,
setError: (error: boolean) => void,
) => {
const [ws, setWs] = useState<WebSocket | null>(null);
const wsRef = useRef<WebSocket | null>(null);
const reconnectTimeoutRef = useRef<NodeJS.Timeout>();
const retryCountRef = useRef(0);
const isCleaningUpRef = useRef(false);
const MAX_RETRIES = 3;
const INITIAL_BACKOFF = 1000; // 1 second
const getBackoffDelay = (retryCount: number) => {
return Math.min(INITIAL_BACKOFF * Math.pow(2, retryCount), 10000); // Cap at 10 seconds
};
useEffect(() => {
if (!ws) {
const connectWs = async () => {
if (wsRef.current?.readyState === WebSocket.OPEN) {
wsRef.current.close();
}
try {
let chatModel = localStorage.getItem('chatModel');
let chatModelProvider = localStorage.getItem('chatModelProvider');
let embeddingModel = localStorage.getItem('embeddingModel');
let embeddingModelProvider = localStorage.getItem(
'embeddingModelProvider',
);
let openAIBaseURL =
chatModelProvider === 'custom_openai'
? localStorage.getItem('openAIBaseURL')
: null;
let openAIPIKey =
chatModelProvider === 'custom_openai'
? localStorage.getItem('openAIApiKey')
: null;
const providers = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/models`,
@ -45,7 +74,13 @@ const useSocket = (
'Content-Type': 'application/json',
},
},
).then(async (res) => await res.json());
).then(async (res) => {
if (!res.ok)
throw new Error(
`Failed to fetch models: ${res.status} ${res.statusText}`,
);
return res.json();
});
if (
!chatModel ||
@ -56,16 +91,18 @@ const useSocket = (
if (!chatModel || !chatModelProvider) {
const chatModelProviders = providers.chatModelProviders;
chatModelProvider = Object.keys(chatModelProviders)[0];
chatModelProvider =
chatModelProvider || Object.keys(chatModelProviders)[0];
if (chatModelProvider === 'custom_openai') {
toast.error(
'Seems like you are using the custom OpenAI provider, please open the settings and configure the API key and base URL',
'Seems like you are using the custom OpenAI provider, please open the settings and enter a model name to use.',
);
setError(true);
return;
} else {
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
if (
!chatModelProviders ||
Object.keys(chatModelProviders).length === 0
@ -102,18 +139,42 @@ const useSocket = (
if (
Object.keys(chatModelProviders).length > 0 &&
!chatModelProviders[chatModelProvider]
(((!openAIBaseURL || !openAIPIKey) &&
chatModelProvider === 'custom_openai') ||
!chatModelProviders[chatModelProvider])
) {
chatModelProvider = Object.keys(chatModelProviders)[0];
const chatModelProvidersKeys = Object.keys(chatModelProviders);
chatModelProvider =
chatModelProvidersKeys.find(
(key) => Object.keys(chatModelProviders[key]).length > 0,
) || chatModelProvidersKeys[0];
if (
chatModelProvider === 'custom_openai' &&
(!openAIBaseURL || !openAIPIKey)
) {
toast.error(
'Seems like you are using the custom OpenAI provider, please open the settings and configure the API key and base URL',
);
setError(true);
return;
}
localStorage.setItem('chatModelProvider', chatModelProvider);
}
if (
chatModelProvider &&
chatModelProvider != 'custom_openai' &&
(!openAIBaseURL || !openAIPIKey) &&
!chatModelProviders[chatModelProvider][chatModel]
) {
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
chatModel = Object.keys(
chatModelProviders[
Object.keys(chatModelProviders[chatModelProvider]).length > 0
? chatModelProvider
: Object.keys(chatModelProviders)[0]
],
)[0];
localStorage.setItem('chatModel', chatModel);
}
@ -162,6 +223,7 @@ const useSocket = (
wsURL.search = searchParams.toString();
const ws = new WebSocket(wsURL.toString());
wsRef.current = ws;
const timeoutId = setTimeout(() => {
if (ws.readyState !== 1) {
@ -177,11 +239,16 @@ const useSocket = (
const interval = setInterval(() => {
if (ws.readyState === 1) {
setIsWSReady(true);
setError(false);
if (retryCountRef.current > 0) {
toast.success('Connection restored.');
}
retryCountRef.current = 0;
clearInterval(interval);
}
}, 5);
clearTimeout(timeoutId);
console.log('[DEBUG] opened');
console.debug(new Date(), 'ws:connected');
}
if (data.type === 'error') {
toast.error(data.data);
@ -190,24 +257,68 @@ const useSocket = (
ws.onerror = () => {
clearTimeout(timeoutId);
setError(true);
setIsWSReady(false);
toast.error('WebSocket connection error.');
};
ws.onclose = () => {
clearTimeout(timeoutId);
setError(true);
console.log('[DEBUG] closed');
setIsWSReady(false);
console.debug(new Date(), 'ws:disconnected');
if (!isCleaningUpRef.current) {
toast.error('Connection lost. Attempting to reconnect...');
attemptReconnect();
}
};
} catch (error) {
console.debug(new Date(), 'ws:error', error);
setIsWSReady(false);
attemptReconnect();
}
};
setWs(ws);
const attemptReconnect = () => {
retryCountRef.current += 1;
if (retryCountRef.current > MAX_RETRIES) {
console.debug(new Date(), 'ws:max_retries');
setError(true);
toast.error(
'Unable to connect to server after multiple attempts. Please refresh the page to try again.',
);
return;
}
const backoffDelay = getBackoffDelay(retryCountRef.current);
console.debug(
new Date(),
`ws:retry attempt=${retryCountRef.current}/${MAX_RETRIES} delay=${backoffDelay}ms`,
);
if (reconnectTimeoutRef.current) {
clearTimeout(reconnectTimeoutRef.current);
}
reconnectTimeoutRef.current = setTimeout(() => {
connectWs();
}, backoffDelay);
};
connectWs();
}
}, [ws, url, setIsWSReady, setError]);
return ws;
return () => {
if (reconnectTimeoutRef.current) {
clearTimeout(reconnectTimeoutRef.current);
}
if (wsRef.current?.readyState === WebSocket.OPEN) {
wsRef.current.close();
isCleaningUpRef.current = true;
console.debug(new Date(), 'ws:cleanup');
}
};
}, [url, setIsWSReady, setError]);
return wsRef.current;
};
const loadMessages = async (
@ -217,6 +328,8 @@ const loadMessages = async (
setChatHistory: (history: [string, string][]) => void,
setFocusMode: (mode: string) => void,
setNotFound: (notFound: boolean) => void,
setFiles: (files: File[]) => void,
setFileIds: (fileIds: string[]) => void,
) => {
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/chats/${chatId}`,
@ -249,10 +362,21 @@ const loadMessages = async (
return [msg.role, msg.content];
}) as [string, string][];
console.log('[DEBUG] messages loaded');
console.debug(new Date(), 'app:messages_loaded');
document.title = messages[0].content;
const files = data.chat.files.map((file: any) => {
return {
fileName: file.name,
fileExtension: file.name.split('.').pop(),
fileId: file.fileId,
};
});
setFiles(files);
setFileIds(files.map((file: File) => file.fileId));
setChatHistory(history);
setFocusMode(data.chat.focusMode);
setIsMessagesLoaded(true);
@ -281,6 +405,9 @@ const ChatWindow = ({ id }: { id?: string }) => {
const [chatHistory, setChatHistory] = useState<[string, string][]>([]);
const [messages, setMessages] = useState<Message[]>([]);
const [files, setFiles] = useState<File[]>([]);
const [fileIds, setFileIds] = useState<string[]>([]);
const [focusMode, setFocusMode] = useState('webSearch');
const [optimizationMode, setOptimizationMode] = useState('speed');
@ -288,6 +415,8 @@ const ChatWindow = ({ id }: { id?: string }) => {
const [notFound, setNotFound] = useState(false);
const [isSettingsOpen, setIsSettingsOpen] = useState(false);
useEffect(() => {
if (
chatId &&
@ -302,6 +431,8 @@ const ChatWindow = ({ id }: { id?: string }) => {
setChatHistory,
setFocusMode,
setNotFound,
setFiles,
setFileIds,
);
} else if (!chatId) {
setNewChatCreated(true);
@ -315,9 +446,10 @@ const ChatWindow = ({ id }: { id?: string }) => {
return () => {
if (ws?.readyState === 1) {
ws.close();
console.log('[DEBUG] closed');
console.debug(new Date(), 'ws:cleanup');
}
};
// eslint-disable-next-line react-hooks/exhaustive-deps
}, []);
const messagesRef = useRef<Message[]>([]);
@ -329,12 +461,19 @@ const ChatWindow = ({ id }: { id?: string }) => {
useEffect(() => {
if (isMessagesLoaded && isWSReady) {
setIsReady(true);
console.log('[DEBUG] ready');
console.debug(new Date(), 'app:ready');
} else {
setIsReady(false);
}
}, [isMessagesLoaded, isWSReady]);
const sendMessage = async (message: string) => {
const sendMessage = async (message: string, messageId?: string) => {
if (loading) return;
if (!ws || ws.readyState !== WebSocket.OPEN) {
toast.error('Cannot send message while disconnected');
return;
}
setLoading(true);
setMessageAppeared(false);
@ -342,15 +481,17 @@ const ChatWindow = ({ id }: { id?: string }) => {
let recievedMessage = '';
let added = false;
const messageId = crypto.randomBytes(7).toString('hex');
messageId = messageId ?? crypto.randomBytes(7).toString('hex');
ws?.send(
ws.send(
JSON.stringify({
type: 'message',
message: {
messageId: messageId,
chatId: chatId!,
content: message,
},
files: fileIds,
focusMode: focusMode,
optimizationMode: optimizationMode,
history: [...chatHistory, ['human', message]],
@ -474,7 +615,7 @@ const ChatWindow = ({ id }: { id?: string }) => {
return [...prev.slice(0, messages.length > 2 ? index - 1 : 0)];
});
sendMessage(message.content);
sendMessage(message.content, message.messageId);
};
useEffect(() => {
@ -486,28 +627,41 @@ const ChatWindow = ({ id }: { id?: string }) => {
if (hasError) {
return (
<div className="relative">
<div className="absolute w-full flex flex-row items-center justify-end mr-5 mt-5">
<Settings
className="cursor-pointer lg:hidden"
onClick={() => setIsSettingsOpen(true)}
/>
</div>
<div className="flex flex-col items-center justify-center min-h-screen">
<p className="dark:text-white/70 text-black/70 text-sm">
Failed to connect to the server. Please try again later.
</p>
</div>
<SettingsDialog isOpen={isSettingsOpen} setIsOpen={setIsSettingsOpen} />
</div>
);
}
return isReady ? (
notFound ? (
<Error statusCode={404} />
<NextError statusCode={404} />
) : (
<div>
{messages.length > 0 ? (
<>
<Navbar messages={messages} />
<Navbar chatId={chatId!} messages={messages} />
<Chat
loading={loading}
messages={messages}
sendMessage={sendMessage}
messageAppeared={messageAppeared}
rewrite={rewrite}
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
/>
</>
) : (
@ -517,6 +671,10 @@ const ChatWindow = ({ id }: { id?: string }) => {
setFocusMode={setFocusMode}
optimizationMode={optimizationMode}
setOptimizationMode={setOptimizationMode}
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
/>
)}
</div>

View file

@ -16,10 +16,12 @@ const DeleteChat = ({
chatId,
chats,
setChats,
redirect = false,
}: {
chatId: string;
chats: Chat[];
setChats: (chats: Chat[]) => void;
redirect?: boolean;
}) => {
const [confirmationDialogOpen, setConfirmationDialogOpen] = useState(false);
const [loading, setLoading] = useState(false);
@ -44,6 +46,10 @@ const DeleteChat = ({
const newChats = chats.filter((chat) => chat.id !== chatId);
setChats(newChats);
if (redirect) {
window.location.href = '/';
}
} catch (err: any) {
toast.error(err.message);
} finally {

View file

@ -1,4 +1,8 @@
import { Settings } from 'lucide-react';
import EmptyChatMessageInput from './EmptyChatMessageInput';
import SettingsDialog from './SettingsDialog';
import { useState } from 'react';
import { File } from './ChatWindow';
const EmptyChat = ({
sendMessage,
@ -6,15 +10,32 @@ const EmptyChat = ({
setFocusMode,
optimizationMode,
setOptimizationMode,
fileIds,
setFileIds,
files,
setFiles,
}: {
sendMessage: (message: string) => void;
focusMode: string;
setFocusMode: (mode: string) => void;
optimizationMode: string;
setOptimizationMode: (mode: string) => void;
fileIds: string[];
setFileIds: (fileIds: string[]) => void;
files: File[];
setFiles: (files: File[]) => void;
}) => {
const [isSettingsOpen, setIsSettingsOpen] = useState(false);
return (
<div className="relative">
<SettingsDialog isOpen={isSettingsOpen} setIsOpen={setIsSettingsOpen} />
<div className="absolute w-full flex flex-row items-center justify-end mr-5 mt-5">
<Settings
className="cursor-pointer lg:hidden"
onClick={() => setIsSettingsOpen(true)}
/>
</div>
<div className="flex flex-col items-center justify-center min-h-screen max-w-screen-sm mx-auto p-2 space-y-8">
<h2 className="text-black/70 dark:text-white/70 text-3xl font-medium -mt-8">
Research begins here.
@ -25,6 +46,10 @@ const EmptyChat = ({
setFocusMode={setFocusMode}
optimizationMode={optimizationMode}
setOptimizationMode={setOptimizationMode}
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
/>
</div>
</div>

View file

@ -4,6 +4,8 @@ import TextareaAutosize from 'react-textarea-autosize';
import CopilotToggle from './MessageInputActions/Copilot';
import Focus from './MessageInputActions/Focus';
import Optimization from './MessageInputActions/Optimization';
import Attach from './MessageInputActions/Attach';
import { File } from './ChatWindow';
const EmptyChatMessageInput = ({
sendMessage,
@ -11,12 +13,20 @@ const EmptyChatMessageInput = ({
setFocusMode,
optimizationMode,
setOptimizationMode,
fileIds,
setFileIds,
files,
setFiles,
}: {
sendMessage: (message: string) => void;
focusMode: string;
setFocusMode: (mode: string) => void;
optimizationMode: string;
setOptimizationMode: (mode: string) => void;
fileIds: string[];
setFileIds: (fileIds: string[]) => void;
files: File[];
setFiles: (files: File[]) => void;
}) => {
const [copilotEnabled, setCopilotEnabled] = useState(false);
const [message, setMessage] = useState('');
@ -40,6 +50,8 @@ const EmptyChatMessageInput = ({
document.addEventListener('keydown', handleKeyDown);
inputRef.current?.focus();
return () => {
document.removeEventListener('keydown', handleKeyDown);
};
@ -71,8 +83,15 @@ const EmptyChatMessageInput = ({
placeholder="Ask anything..."
/>
<div className="flex flex-row items-center justify-between mt-4">
<div className="flex flex-row items-center space-x-4">
<div className="flex flex-row items-center space-x-2 lg:space-x-4">
<Focus focusMode={focusMode} setFocusMode={setFocusMode} />
<Attach
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
showText
/>
</div>
<div className="flex flex-row items-center space-x-1 sm:space-x-4">
<Optimization

View file

@ -107,8 +107,8 @@ const MessageBox = ({
</div>
<Markdown
className={cn(
'prose dark:prose-invert prose-p:leading-relaxed prose-pre:p-0',
'max-w-none break-words text-black dark:text-white text-sm md:text-base font-medium',
'prose prose-h1:mb-3 prose-h2:mb-2 prose-h2:mt-6 prose-h2:font-[800] prose-h3:mt-4 prose-h3:mb-1.5 prose-h3:font-[600] dark:prose-invert prose-p:leading-relaxed prose-pre:p-0 font-[400]',
'max-w-none break-words text-black dark:text-white',
)}
>
{parsedMessage}
@ -186,10 +186,10 @@ const MessageBox = ({
<div className="lg:sticky lg:top-20 flex flex-col items-center space-y-3 w-full lg:w-3/12 z-30 h-full pb-4">
<SearchImages
query={history[messageIndex - 1].content}
chat_history={history.slice(0, messageIndex - 1)}
chatHistory={history.slice(0, messageIndex - 1)}
/>
<SearchVideos
chat_history={history.slice(0, messageIndex - 1)}
chatHistory={history.slice(0, messageIndex - 1)}
query={history[messageIndex - 1].content}
/>
</div>

View file

@ -4,13 +4,23 @@ import { useEffect, useRef, useState } from 'react';
import TextareaAutosize from 'react-textarea-autosize';
import Attach from './MessageInputActions/Attach';
import CopilotToggle from './MessageInputActions/Copilot';
import { File } from './ChatWindow';
import AttachSmall from './MessageInputActions/AttachSmall';
const MessageInput = ({
sendMessage,
loading,
fileIds,
setFileIds,
files,
setFiles,
}: {
sendMessage: (message: string) => void;
loading: boolean;
fileIds: string[];
setFileIds: (fileIds: string[]) => void;
files: File[];
setFiles: (files: File[]) => void;
}) => {
const [copilotEnabled, setCopilotEnabled] = useState(false);
const [message, setMessage] = useState('');
@ -69,7 +79,14 @@ const MessageInput = ({
mode === 'multi' ? 'flex-col rounded-lg' : 'flex-row rounded-full',
)}
>
{mode === 'single' && <Attach />}
{mode === 'single' && (
<AttachSmall
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
/>
)}
<TextareaAutosize
ref={inputRef}
value={message}
@ -96,7 +113,12 @@ const MessageInput = ({
)}
{mode === 'multi' && (
<div className="flex flex-row items-center justify-between w-full pt-2">
<Attach />
<AttachSmall
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
/>
<div className="flex flex-row items-center space-x-4">
<CopilotToggle
copilotEnabled={copilotEnabled}

View file

@ -1,12 +1,183 @@
import { CopyPlus } from 'lucide-react';
import { cn } from '@/lib/utils';
import {
Popover,
PopoverButton,
PopoverPanel,
Transition,
} from '@headlessui/react';
import { CopyPlus, File, LoaderCircle, Plus, Trash } from 'lucide-react';
import { Fragment, useRef, useState } from 'react';
import { File as FileType } from '../ChatWindow';
const Attach = () => {
return (
const Attach = ({
fileIds,
setFileIds,
showText,
files,
setFiles,
}: {
fileIds: string[];
setFileIds: (fileIds: string[]) => void;
showText?: boolean;
files: FileType[];
setFiles: (files: FileType[]) => void;
}) => {
const [loading, setLoading] = useState(false);
const fileInputRef = useRef<any>();
const handleChange = async (e: React.ChangeEvent<HTMLInputElement>) => {
setLoading(true);
const data = new FormData();
for (let i = 0; i < e.target.files!.length; i++) {
data.append('files', e.target.files![i]);
}
const embeddingModelProvider = localStorage.getItem(
'embeddingModelProvider',
);
const embeddingModel = localStorage.getItem('embeddingModel');
data.append('embedding_model_provider', embeddingModelProvider!);
data.append('embedding_model', embeddingModel!);
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/uploads`, {
method: 'POST',
body: data,
});
const resData = await res.json();
setFiles([...files, ...resData.files]);
setFileIds([...fileIds, ...resData.files.map((file: any) => file.fileId)]);
setLoading(false);
};
return loading ? (
<div className="flex flex-row items-center justify-between space-x-1">
<LoaderCircle size={18} className="text-sky-400 animate-spin" />
<p className="text-sky-400 inline whitespace-nowrap text-xs font-medium">
Uploading..
</p>
</div>
) : files.length > 0 ? (
<Popover className="relative w-full max-w-[15rem] md:max-w-md lg:max-w-lg">
<PopoverButton
type="button"
className={cn(
'flex flex-row items-center justify-between space-x-1 p-2 text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary active:scale-95 transition duration-200 hover:text-black dark:hover:text-white',
files.length > 0 ? '-ml-2 lg:-ml-3' : '',
)}
>
{files.length > 1 && (
<>
<File size={19} className="text-sky-400" />
<p className="text-sky-400 inline whitespace-nowrap text-xs font-medium">
{files.length} files
</p>
</>
)}
{files.length === 1 && (
<>
<File size={18} className="text-sky-400" />
<p className="text-sky-400 text-xs font-medium">
{files[0].fileName.length > 10
? files[0].fileName.replace(/\.\w+$/, '').substring(0, 3) +
'...' +
files[0].fileExtension
: files[0].fileName}
</p>
</>
)}
</PopoverButton>
<Transition
as={Fragment}
enter="transition ease-out duration-150"
enterFrom="opacity-0 translate-y-1"
enterTo="opacity-100 translate-y-0"
leave="transition ease-in duration-150"
leaveFrom="opacity-100 translate-y-0"
leaveTo="opacity-0 translate-y-1"
>
<PopoverPanel className="absolute z-10 w-64 md:w-[350px] right-0">
<div className="bg-light-primary dark:bg-dark-primary border rounded-md border-light-200 dark:border-dark-200 w-full max-h-[200px] md:max-h-none overflow-y-auto flex flex-col">
<div className="flex flex-row items-center justify-between px-3 py-2">
<h4 className="text-black dark:text-white font-medium text-sm">
Attached files
</h4>
<div className="flex flex-row items-center space-x-4">
<button
type="button"
className="p-2 text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black dark:hover:text-white"
onClick={() => fileInputRef.current.click()}
className="flex flex-row items-center space-x-1 text-white/70 hover:text-white transition duration-200"
>
<CopyPlus />
<input
type="file"
onChange={handleChange}
ref={fileInputRef}
accept=".pdf,.docx,.txt"
multiple
hidden
/>
<Plus size={18} />
<p className="text-xs">Add</p>
</button>
<button
onClick={() => {
setFiles([]);
setFileIds([]);
}}
className="flex flex-row items-center space-x-1 text-white/70 hover:text-white transition duration-200"
>
<Trash size={14} />
<p className="text-xs">Clear</p>
</button>
</div>
</div>
<div className="h-[0.5px] mx-2 bg-white/10" />
<div className="flex flex-col items-center">
{files.map((file, i) => (
<div
key={i}
className="flex flex-row items-center justify-start w-full space-x-3 p-3"
>
<div className="bg-dark-100 flex items-center justify-center w-10 h-10 rounded-md">
<File size={16} className="text-white/70" />
</div>
<p className="text-white/70 text-sm">
{file.fileName.length > 25
? file.fileName.replace(/\.\w+$/, '').substring(0, 25) +
'...' +
file.fileExtension
: file.fileName}
</p>
</div>
))}
</div>
</div>
</PopoverPanel>
</Transition>
</Popover>
) : (
<button
type="button"
onClick={() => fileInputRef.current.click()}
className={cn(
'flex flex-row items-center space-x-1 text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black dark:hover:text-white',
showText ? '' : 'p-2',
)}
>
<input
type="file"
onChange={handleChange}
ref={fileInputRef}
accept=".pdf,.docx,.txt"
multiple
hidden
/>
<CopyPlus size={showText ? 18 : undefined} />
{showText && <p className="text-xs font-medium pl-[1px]">Attach</p>}
</button>
);
};

View file

@ -0,0 +1,153 @@
import { cn } from '@/lib/utils';
import {
Popover,
PopoverButton,
PopoverPanel,
Transition,
} from '@headlessui/react';
import { CopyPlus, File, LoaderCircle, Plus, Trash } from 'lucide-react';
import { Fragment, useRef, useState } from 'react';
import { File as FileType } from '../ChatWindow';
const AttachSmall = ({
fileIds,
setFileIds,
files,
setFiles,
}: {
fileIds: string[];
setFileIds: (fileIds: string[]) => void;
files: FileType[];
setFiles: (files: FileType[]) => void;
}) => {
const [loading, setLoading] = useState(false);
const fileInputRef = useRef<any>();
const handleChange = async (e: React.ChangeEvent<HTMLInputElement>) => {
setLoading(true);
const data = new FormData();
for (let i = 0; i < e.target.files!.length; i++) {
data.append('files', e.target.files![i]);
}
const embeddingModelProvider = localStorage.getItem(
'embeddingModelProvider',
);
const embeddingModel = localStorage.getItem('embeddingModel');
data.append('embedding_model_provider', embeddingModelProvider!);
data.append('embedding_model', embeddingModel!);
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/uploads`, {
method: 'POST',
body: data,
});
const resData = await res.json();
setFiles([...files, ...resData.files]);
setFileIds([...fileIds, ...resData.files.map((file: any) => file.fileId)]);
setLoading(false);
};
return loading ? (
<div className="flex flex-row items-center justify-between space-x-1 p-1">
<LoaderCircle size={20} className="text-sky-400 animate-spin" />
</div>
) : files.length > 0 ? (
<Popover className="max-w-[15rem] md:max-w-md lg:max-w-lg">
<PopoverButton
type="button"
className="flex flex-row items-center justify-between space-x-1 p-1 text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary active:scale-95 transition duration-200 hover:text-black dark:hover:text-white"
>
<File size={20} className="text-sky-400" />
</PopoverButton>
<Transition
as={Fragment}
enter="transition ease-out duration-150"
enterFrom="opacity-0 translate-y-1"
enterTo="opacity-100 translate-y-0"
leave="transition ease-in duration-150"
leaveFrom="opacity-100 translate-y-0"
leaveTo="opacity-0 translate-y-1"
>
<PopoverPanel className="absolute z-10 w-64 md:w-[350px] bottom-14 -ml-3">
<div className="bg-light-primary dark:bg-dark-primary border rounded-md border-light-200 dark:border-dark-200 w-full max-h-[200px] md:max-h-none overflow-y-auto flex flex-col">
<div className="flex flex-row items-center justify-between px-3 py-2">
<h4 className="text-black dark:text-white font-medium text-sm">
Attached files
</h4>
<div className="flex flex-row items-center space-x-4">
<button
type="button"
onClick={() => fileInputRef.current.click()}
className="flex flex-row items-center space-x-1 text-white/70 hover:text-white transition duration-200"
>
<input
type="file"
onChange={handleChange}
ref={fileInputRef}
accept=".pdf,.docx,.txt"
multiple
hidden
/>
<Plus size={18} />
<p className="text-xs">Add</p>
</button>
<button
onClick={() => {
setFiles([]);
setFileIds([]);
}}
className="flex flex-row items-center space-x-1 text-white/70 hover:text-white transition duration-200"
>
<Trash size={14} />
<p className="text-xs">Clear</p>
</button>
</div>
</div>
<div className="h-[0.5px] mx-2 bg-white/10" />
<div className="flex flex-col items-center">
{files.map((file, i) => (
<div
key={i}
className="flex flex-row items-center justify-start w-full space-x-3 p-3"
>
<div className="bg-dark-100 flex items-center justify-center w-10 h-10 rounded-md">
<File size={16} className="text-white/70" />
</div>
<p className="text-white/70 text-sm">
{file.fileName.length > 25
? file.fileName.replace(/\.\w+$/, '').substring(0, 25) +
'...' +
file.fileExtension
: file.fileName}
</p>
</div>
))}
</div>
</div>
</PopoverPanel>
</Transition>
</Popover>
) : (
<button
type="button"
onClick={() => fileInputRef.current.click()}
className="flex flex-row items-center space-x-1 text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black dark:hover:text-white p-1"
>
<input
type="file"
onChange={handleChange}
ref={fileInputRef}
accept=".pdf,.docx,.txt"
multiple
hidden
/>
<CopyPlus size={20} />
</button>
);
};
export default AttachSmall;

View file

@ -75,7 +75,7 @@ const Focus = ({
setFocusMode: (mode: string) => void;
}) => {
return (
<Popover className="relative w-full max-w-[15rem] md:max-w-md lg:max-w-lg">
<Popover className="relative w-full max-w-[15rem] md:max-w-md lg:max-w-lg mt-[6.5px]">
<PopoverButton
type="button"
className=" text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary active:scale-95 transition duration-200 hover:text-black dark:hover:text-white"
@ -83,13 +83,16 @@ const Focus = ({
{focusMode !== 'webSearch' ? (
<div className="flex flex-row items-center space-x-1">
{focusModes.find((mode) => mode.key === focusMode)?.icon}
<p className="text-xs font-medium">
<p className="text-xs font-medium hidden lg:block">
{focusModes.find((mode) => mode.key === focusMode)?.title}
</p>
<ChevronDown size={20} />
<ChevronDown size={20} className="-translate-x-1" />
</div>
) : (
<ScanEye />
<div className="flex flex-row items-center space-x-1">
<ScanEye size={20} />
<p className="text-xs font-medium hidden lg:block">Focus</p>
</div>
)}
</PopoverButton>
<Transition

View file

@ -7,6 +7,7 @@ import {
TransitionChild,
} from '@headlessui/react';
import { Document } from '@langchain/core/documents';
import { File } from 'lucide-react';
import { Fragment, useState } from 'react';
const MessageSources = ({ sources }: { sources: Document[] }) => {
@ -36,6 +37,11 @@ const MessageSources = ({ sources }: { sources: Document[] }) => {
</p>
<div className="flex flex-row items-center justify-between">
<div className="flex flex-row items-center space-x-1">
{source.metadata.url === 'File' ? (
<div className="bg-dark-200 hover:bg-dark-100 transition duration-200 flex items-center justify-center w-6 h-6 rounded-full">
<File size={12} className="text-white/70" />
</div>
) : (
<img
src={`https://s2.googleusercontent.com/s2/favicons?domain_url=${source.metadata.url}`}
width={16}
@ -43,6 +49,7 @@ const MessageSources = ({ sources }: { sources: Document[] }) => {
alt="favicon"
className="rounded-lg h-4 w-4"
/>
)}
<p className="text-xs text-black/50 dark:text-white/50 overflow-hidden whitespace-nowrap text-ellipsis">
{source.metadata.url.replace(/.+\/\/|www.|\..+/g, '')}
</p>
@ -60,16 +67,21 @@ const MessageSources = ({ sources }: { sources: Document[] }) => {
className="bg-light-100 hover:bg-light-200 dark:bg-dark-100 dark:hover:bg-dark-200 transition duration-200 rounded-lg p-3 flex flex-col space-y-2 font-medium"
>
<div className="flex flex-row items-center space-x-1">
{sources.slice(3, 6).map((source, i) => (
{sources.slice(3, 6).map((source, i) => {
return source.metadata.url === 'File' ? (
<div className="bg-dark-200 hover:bg-dark-100 transition duration-200 flex items-center justify-center w-6 h-6 rounded-full">
<File size={12} className="text-white/70" />
</div>
) : (
<img
src={`https://s2.googleusercontent.com/s2/favicons?domain_url=${source.metadata.url}`}
width={16}
height={16}
alt="favicon"
className="rounded-lg h-4 w-4"
key={i}
/>
))}
);
})}
</div>
<p className="text-xs text-black/50 dark:text-white/50">
View {sources.length - 3} more
@ -106,6 +118,11 @@ const MessageSources = ({ sources }: { sources: Document[] }) => {
</p>
<div className="flex flex-row items-center justify-between">
<div className="flex flex-row items-center space-x-1">
{source.metadata.url === 'File' ? (
<div className="bg-dark-200 hover:bg-dark-100 transition duration-200 flex items-center justify-center w-6 h-6 rounded-full">
<File size={12} className="text-white/70" />
</div>
) : (
<img
src={`https://s2.googleusercontent.com/s2/favicons?domain_url=${source.metadata.url}`}
width={16}
@ -113,6 +130,7 @@ const MessageSources = ({ sources }: { sources: Document[] }) => {
alt="favicon"
className="rounded-lg h-4 w-4"
/>
)}
<p className="text-xs text-black/50 dark:text-white/50 overflow-hidden whitespace-nowrap text-ellipsis">
{source.metadata.url.replace(
/.+\/\/|www.|\..+/g,

View file

@ -2,8 +2,15 @@ import { Clock, Edit, Share, Trash } from 'lucide-react';
import { Message } from './ChatWindow';
import { useEffect, useState } from 'react';
import { formatTimeDifference } from '@/lib/utils';
import DeleteChat from './DeleteChat';
const Navbar = ({ messages }: { messages: Message[] }) => {
const Navbar = ({
chatId,
messages,
}: {
messages: Message[];
chatId: string;
}) => {
const [title, setTitle] = useState<string>('');
const [timeAgo, setTimeAgo] = useState<string>('');
@ -39,10 +46,12 @@ const Navbar = ({ messages }: { messages: Message[] }) => {
return (
<div className="fixed z-40 top-0 left-0 right-0 px-4 lg:pl-[104px] lg:pr-6 lg:px-8 flex flex-row items-center justify-between w-full py-4 text-sm text-black dark:text-white/70 border-b bg-light-primary dark:bg-dark-primary border-light-100 dark:border-dark-200">
<Edit
size={17}
<a
href="/"
className="active:scale-95 transition duration-100 cursor-pointer lg:hidden"
/>
>
<Edit size={17} />
</a>
<div className="hidden lg:flex flex-row items-center justify-center space-x-2">
<Clock size={17} />
<p className="text-xs">{timeAgo} ago</p>
@ -54,10 +63,7 @@ const Navbar = ({ messages }: { messages: Message[] }) => {
size={17}
className="active:scale-95 transition duration-100 cursor-pointer"
/>
<Trash
size={17}
className="text-red-400 active:scale-95 transition duration-100 cursor-pointer"
/>
<DeleteChat redirect chatId={chatId} chats={[]} setChats={() => {}} />
</div>
</div>
);

View file

@ -13,10 +13,10 @@ type Image = {
const SearchImages = ({
query,
chat_history,
chatHistory,
}: {
query: string;
chat_history: Message[];
chatHistory: Message[];
}) => {
const [images, setImages] = useState<Image[] | null>(null);
const [loading, setLoading] = useState(false);
@ -33,6 +33,9 @@ const SearchImages = ({
const chatModelProvider = localStorage.getItem('chatModelProvider');
const chatModel = localStorage.getItem('chatModel');
const customOpenAIBaseURL = localStorage.getItem('openAIBaseURL');
const customOpenAIKey = localStorage.getItem('openAIApiKey');
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/images`,
{
@ -42,9 +45,15 @@ const SearchImages = ({
},
body: JSON.stringify({
query: query,
chat_history: chat_history,
chat_model_provider: chatModelProvider,
chat_model: chatModel,
chatHistory: chatHistory,
chatModel: {
provider: chatModelProvider,
model: chatModel,
...(chatModelProvider === 'custom_openai' && {
customOpenAIBaseURL: customOpenAIBaseURL,
customOpenAIKey: customOpenAIKey,
}),
},
}),
},
);

View file

@ -1,6 +1,6 @@
/* eslint-disable @next/next/no-img-element */
import { PlayCircle, PlayIcon, PlusIcon, VideoIcon } from 'lucide-react';
import { useState } from 'react';
import { useRef, useState } from 'react';
import Lightbox, { GenericSlide, VideoSlide } from 'yet-another-react-lightbox';
import 'yet-another-react-lightbox/styles.css';
import { Message } from './ChatWindow';
@ -26,15 +26,17 @@ declare module 'yet-another-react-lightbox' {
const Searchvideos = ({
query,
chat_history,
chatHistory,
}: {
query: string;
chat_history: Message[];
chatHistory: Message[];
}) => {
const [videos, setVideos] = useState<Video[] | null>(null);
const [loading, setLoading] = useState(false);
const [open, setOpen] = useState(false);
const [slides, setSlides] = useState<VideoSlide[]>([]);
const [currentIndex, setCurrentIndex] = useState(0);
const videoRefs = useRef<(HTMLIFrameElement | null)[]>([]);
return (
<>
@ -46,6 +48,9 @@ const Searchvideos = ({
const chatModelProvider = localStorage.getItem('chatModelProvider');
const chatModel = localStorage.getItem('chatModel');
const customOpenAIBaseURL = localStorage.getItem('openAIBaseURL');
const customOpenAIKey = localStorage.getItem('openAIApiKey');
const res = await fetch(
`${process.env.NEXT_PUBLIC_API_URL}/videos`,
{
@ -55,9 +60,15 @@ const Searchvideos = ({
},
body: JSON.stringify({
query: query,
chat_history: chat_history,
chat_model_provider: chatModelProvider,
chat_model: chatModel,
chatHistory: chatHistory,
chatModel: {
provider: chatModelProvider,
model: chatModel,
...(chatModelProvider === 'custom_openai' && {
customOpenAIBaseURL: customOpenAIBaseURL,
customOpenAIKey: customOpenAIKey,
}),
},
}),
},
);
@ -173,18 +184,39 @@ const Searchvideos = ({
open={open}
close={() => setOpen(false)}
slides={slides}
index={currentIndex}
on={{
view: ({ index }) => {
const previousIframe = videoRefs.current[currentIndex];
if (previousIframe?.contentWindow) {
previousIframe.contentWindow.postMessage(
'{"event":"command","func":"pauseVideo","args":""}',
'*',
);
}
setCurrentIndex(index);
},
}}
render={{
slide: ({ slide }) =>
slide.type === 'video-slide' ? (
slide: ({ slide }) => {
const index = slides.findIndex((s) => s === slide);
return slide.type === 'video-slide' ? (
<div className="h-full w-full flex flex-row items-center justify-center">
<iframe
src={slide.iframe_src}
src={`${slide.iframe_src}${slide.iframe_src.includes('?') ? '&' : '?'}enablejsapi=1`}
ref={(el) => {
if (el) {
videoRefs.current[index] = el;
}
}}
className="aspect-video max-h-[95vh] w-[95vw] rounded-2xl md:w-[80vw]"
allowFullScreen
allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"
/>
</div>
) : null,
) : null;
},
}}
/>
</>

View file

@ -63,6 +63,7 @@ interface SettingsType {
openaiApiKey: string;
groqApiKey: string;
anthropicApiKey: string;
geminiApiKey: string;
ollamaApiUrl: string;
}
@ -128,7 +129,9 @@ const SettingsDialog = ({
const chatModel =
localStorage.getItem('chatModel') ||
(data.chatModelProviders &&
data.chatModelProviders[chatModelProvider]?.[0].name) ||
data.chatModelProviders[chatModelProvider]?.length > 0
? data.chatModelProviders[chatModelProvider][0].name
: undefined) ||
'';
const embeddingModelProvider =
localStorage.getItem('embeddingModelProvider') ||
@ -474,6 +477,22 @@ const SettingsDialog = ({
}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Gemini API Key
</p>
<Input
type="text"
placeholder="Gemini API key"
defaultValue={config.geminiApiKey}
onChange={(e) =>
setConfig({
...config,
geminiApiKey: e.target.value,
})
}
/>
</div>
</div>
)}
{isLoading && (

View file

@ -4,15 +4,24 @@ export const getSuggestions = async (chatHisory: Message[]) => {
const chatModel = localStorage.getItem('chatModel');
const chatModelProvider = localStorage.getItem('chatModelProvider');
const customOpenAIKey = localStorage.getItem('openAIApiKey');
const customOpenAIBaseURL = localStorage.getItem('openAIBaseURL');
const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/suggestions`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
chat_history: chatHisory,
chat_model: chatModel,
chat_model_provider: chatModelProvider,
chatHistory: chatHisory,
chatModel: {
provider: chatModelProvider,
model: chatModel,
...(chatModelProvider === 'custom_openai' && {
customOpenAIKey,
customOpenAIBaseURL,
}),
},
}),
});

View file

@ -1,6 +1,6 @@
{
"name": "perplexica-frontend",
"version": "1.9.0",
"version": "1.10.0-rc2",
"license": "MIT",
"author": "ItzCrazyKns",
"scripts": {
@ -11,14 +11,14 @@
"format:write": "prettier . --write"
},
"dependencies": {
"@headlessui/react": "^2.1.9",
"@headlessui/react": "^2.2.0",
"@icons-pack/react-simple-icons": "^9.4.0",
"@langchain/openai": "^0.0.25",
"@tailwindcss/typography": "^0.5.12",
"clsx": "^2.1.0",
"langchain": "^0.1.30",
"lucide-react": "^0.363.0",
"markdown-to-jsx": "^7.4.5",
"markdown-to-jsx": "^7.7.2",
"next": "14.1.4",
"next-themes": "^0.3.0",
"react": "^18",

View file

@ -74,9 +74,9 @@
"@floating-ui/utils" "^0.2.8"
"@floating-ui/dom@^1.0.0":
version "1.6.11"
resolved "https://registry.yarnpkg.com/@floating-ui/dom/-/dom-1.6.11.tgz#8631857838d34ee5712339eb7cbdfb8ad34da723"
integrity sha512-qkMCxSR24v2vGkhYDo/UzxfJN3D4syqSjyuTFz6C7XcpU1pASPRieNI0Kj5VP3/503mOfYiGY891ugBX1GlABQ==
version "1.6.12"
resolved "https://registry.yarnpkg.com/@floating-ui/dom/-/dom-1.6.12.tgz#6333dcb5a8ead3b2bf82f33d6bc410e95f54e556"
integrity sha512-NP83c0HjokcGVEMeoStg317VD9W7eDlGK7457dMBANbKA6GJZdc7rjujdgqzTaz93jkGgc5P/jeWbaCHnMNc+w==
dependencies:
"@floating-ui/core" "^1.6.0"
"@floating-ui/utils" "^0.2.8"
@ -89,9 +89,9 @@
"@floating-ui/dom" "^1.0.0"
"@floating-ui/react@^0.26.16":
version "0.26.24"
resolved "https://registry.yarnpkg.com/@floating-ui/react/-/react-0.26.24.tgz#072b9dfeca4e79ef4e3000ef1c28e0ffc86f4ed4"
integrity sha512-2ly0pCkZIGEQUq5H8bBK0XJmc1xIK/RM3tvVzY3GBER7IOD1UgmC2Y2tjj4AuS+TC+vTE1KJv2053290jua0Sw==
version "0.26.28"
resolved "https://registry.yarnpkg.com/@floating-ui/react/-/react-0.26.28.tgz#93f44ebaeb02409312e9df9507e83aab4a8c0dc7"
integrity sha512-yORQuuAtVpiRjpMhdc0wJj06b9JFjrYF4qp96j++v2NBpbi6SEGF7donUJ3TMieerQ6qVkAv1tgr7L4r5roTqw==
dependencies:
"@floating-ui/react-dom" "^2.1.2"
"@floating-ui/utils" "^0.2.8"
@ -102,10 +102,10 @@
resolved "https://registry.yarnpkg.com/@floating-ui/utils/-/utils-0.2.8.tgz#21a907684723bbbaa5f0974cf7730bd797eb8e62"
integrity sha512-kym7SodPp8/wloecOpcmSnWJsK7M0E5Wg8UcFA+uO4B9s5d0ywXOEro/8HM9x0rW+TljRzul/14UYz3TleT3ig==
"@headlessui/react@^2.1.9":
version "2.1.9"
resolved "https://registry.yarnpkg.com/@headlessui/react/-/react-2.1.9.tgz#d8d3ff64255177a87706cc4f24f42aeac65b1695"
integrity sha512-ckWw7vlKtnoa1fL2X0fx1a3t/Li9MIKDVXn3SgG65YlxvDAsNrY39PPCxVM7sQRA7go2fJsuHSSauKFNaJHH7A==
"@headlessui/react@^2.2.0":
version "2.2.0"
resolved "https://registry.yarnpkg.com/@headlessui/react/-/react-2.2.0.tgz#a8e32f0899862849a1ce1615fa280e7891431ab7"
integrity sha512-RzCEg+LXsuI7mHiSomsu/gBJSjpupm6A1qIZ5sWjd7JhARNlMiSA4kKfJpCKwU9tE+zMRterhhrP74PvfJrpXQ==
dependencies:
"@floating-ui/react" "^0.26.16"
"@react-aria/focus" "^3.17.1"
@ -317,20 +317,20 @@
integrity sha512-+1VkjdD0QBLPodGrJUeqarH8VAIvQODIbwh9XpP5Syisf7YoQgsJKPNFoqqLQlu+VQ/tVSshMR6loPMn8U+dPg==
"@react-aria/focus@^3.17.1":
version "3.18.3"
resolved "https://registry.yarnpkg.com/@react-aria/focus/-/focus-3.18.3.tgz#4fe32de1e7530beab8da2e7b89f0f17d22a47e5e"
integrity sha512-WKUElg+5zS0D3xlVn8MntNnkzJql2J6MuzAMP8Sv5WTgFDse/XGR842dsxPTIyKKdrWVCRegCuwa4m3n/GzgJw==
version "3.18.4"
resolved "https://registry.yarnpkg.com/@react-aria/focus/-/focus-3.18.4.tgz#a6e95896bc8680d1b5bcd855e983fc2c195a1a55"
integrity sha512-91J35077w9UNaMK1cpMUEFRkNNz0uZjnSwiyBCFuRdaVuivO53wNC9XtWSDNDdcO5cGy87vfJRVAiyoCn/mjqA==
dependencies:
"@react-aria/interactions" "^3.22.3"
"@react-aria/interactions" "^3.22.4"
"@react-aria/utils" "^3.25.3"
"@react-types/shared" "^3.25.0"
"@swc/helpers" "^0.5.0"
clsx "^2.0.0"
"@react-aria/interactions@^3.21.3", "@react-aria/interactions@^3.22.3":
version "3.22.3"
resolved "https://registry.yarnpkg.com/@react-aria/interactions/-/interactions-3.22.3.tgz#3ba50db12f6ed443ae061eed79e41509eaa3d8e6"
integrity sha512-RRUb/aG+P0IKTIWikY/SylB6bIbLZeztnZY2vbe7RAG5MgVaCgn5HQ45SI15GlTmhsFG8CnF6slJsUFJiNHpbQ==
"@react-aria/interactions@^3.21.3", "@react-aria/interactions@^3.22.4":
version "3.22.4"
resolved "https://registry.yarnpkg.com/@react-aria/interactions/-/interactions-3.22.4.tgz#88ed61ab6a485f869bc1f65ae6688d48ca96064b"
integrity sha512-E0vsgtpItmknq/MJELqYJwib+YN18Qag8nroqwjk1qOnBa9ROIkUhWJerLi1qs5diXq9LHKehZDXRlwPvdEFww==
dependencies:
"@react-aria/ssr" "^3.9.6"
"@react-aria/utils" "^3.25.3"
@ -380,11 +380,11 @@
tslib "^2.4.0"
"@swc/helpers@^0.5.0":
version "0.5.13"
resolved "https://registry.yarnpkg.com/@swc/helpers/-/helpers-0.5.13.tgz#33e63ff3cd0cade557672bd7888a39ce7d115a8c"
integrity sha512-UoKGxQ3r5kYI9dALKJapMmuK+1zWM/H17Z1+iwnNmzcJRnfFuevZs375TA5rW31pu4BS4NoSy1fRsexDXfWn5w==
version "0.5.15"
resolved "https://registry.yarnpkg.com/@swc/helpers/-/helpers-0.5.15.tgz#79efab344c5819ecf83a43f3f9f811fc84b516d7"
integrity sha512-JQ5TuMi45Owi4/BIMAJBoSQoOJu12oOk/gADqlcUL9JEdHB8vyjUSsxqeNXnmXHjYKMi2WcYtezGEEhqUI/E2g==
dependencies:
tslib "^2.4.0"
tslib "^2.8.0"
"@tailwindcss/typography@^0.5.12":
version "0.5.12"
@ -397,16 +397,16 @@
postcss-selector-parser "6.0.10"
"@tanstack/react-virtual@^3.8.1":
version "3.10.8"
resolved "https://registry.yarnpkg.com/@tanstack/react-virtual/-/react-virtual-3.10.8.tgz#bf4b06f157ed298644a96ab7efc1a2b01ab36e3c"
integrity sha512-VbzbVGSsZlQktyLrP5nxE+vE1ZR+U0NFAWPbJLoG2+DKPwd2D7dVICTVIIaYlJqX1ZCEnYDbaOpmMwbsyhBoIA==
version "3.10.9"
resolved "https://registry.yarnpkg.com/@tanstack/react-virtual/-/react-virtual-3.10.9.tgz#40606b6dd8aba8e977f576d8f7df07f69ca63eea"
integrity sha512-OXO2uBjFqA4Ibr2O3y0YMnkrRWGVNqcvHQXmGvMu6IK8chZl3PrDxFXdGZ2iZkSrKh3/qUYoFqYe+Rx23RoU0g==
dependencies:
"@tanstack/virtual-core" "3.10.8"
"@tanstack/virtual-core" "3.10.9"
"@tanstack/virtual-core@3.10.8":
version "3.10.8"
resolved "https://registry.yarnpkg.com/@tanstack/virtual-core/-/virtual-core-3.10.8.tgz#975446a667755222f62884c19e5c3c66d959b8b4"
integrity sha512-PBu00mtt95jbKFi6Llk9aik8bnR3tR/oQP1o3TSi+iG//+Q2RTIzCEgKkHG8BB86kxMNW6O8wku+Lmi+QFR6jA==
"@tanstack/virtual-core@3.10.9":
version "3.10.9"
resolved "https://registry.yarnpkg.com/@tanstack/virtual-core/-/virtual-core-3.10.9.tgz#55710c92b311fdaa8d8c66682a0dbdd684bc77c4"
integrity sha512-kBknKOKzmeR7lN+vSadaKWXaLS0SZZG+oqpQ/k80Q6g9REn6zRHS/ZYdrIzHnpHgy/eWs00SujveUN/GJT2qTw==
"@types/json5@^0.0.29":
version "0.0.29"
@ -2210,10 +2210,10 @@ lucide-react@^0.363.0:
resolved "https://registry.yarnpkg.com/lucide-react/-/lucide-react-0.363.0.tgz#2bb1f9d09b830dda86f5118fcd097f87247fe0e3"
integrity sha512-AlsfPCsXQyQx7wwsIgzcKOL9LwC498LIMAo+c0Es5PkHJa33xwmYAkkSoKoJWWWSYQEStqu58/jT4tL2gi32uQ==
markdown-to-jsx@^7.4.5:
version "7.4.6"
resolved "https://registry.yarnpkg.com/markdown-to-jsx/-/markdown-to-jsx-7.4.6.tgz#1ea0018c549bf00c9ce35e8f4ea57e48028d9cf7"
integrity sha512-3cyNxI/PwotvYkjg6KmFaN1uyN/7NqETteD2DobBB8ro/FR9jsHIh4Fi7ywAz0s9QHRKCmGlOUggs5GxSWACKA==
markdown-to-jsx@^7.7.2:
version "7.7.2"
resolved "https://registry.yarnpkg.com/markdown-to-jsx/-/markdown-to-jsx-7.7.2.tgz#59c1dd64f48b53719311ab140be3cd51cdabccd3"
integrity sha512-N3AKfYRvxNscvcIH6HDnDKILp4S8UWbebp+s92Y8SwIq0CuSbLW4Jgmrbjku3CWKjTQO0OyIMS6AhzqrwjEa3g==
md5@^2.3.0:
version "2.3.0"
@ -3192,10 +3192,10 @@ tsconfig-paths@^3.15.0:
minimist "^1.2.6"
strip-bom "^3.0.0"
tslib@^2.4.0:
version "2.6.2"
resolved "https://registry.yarnpkg.com/tslib/-/tslib-2.6.2.tgz#703ac29425e7b37cd6fd456e92404d46d1f3e4ae"
integrity sha512-AEYxH93jGFPn/a2iVAwW87VuUIkR1FVUKB77NwMF7nBTDkDrrT/Hpt/IrCJ0QXhW27jTBDcf5ZY7w6RiqTMw2Q==
tslib@^2.4.0, tslib@^2.8.0:
version "2.8.1"
resolved "https://registry.yarnpkg.com/tslib/-/tslib-2.8.1.tgz#612efe4ed235d567e8aba5f2a5fab70280ade83f"
integrity sha512-oJFu94HQb+KVduSUQL7wnpmqnfmLsOA/nAh6b6EH0wCEoK0/mPeXU6c3wKDV83MkOuHPRHtSXKKU99IBazS/2w==
type-check@^0.4.0, type-check@~0.4.0:
version "0.4.0"

2
uploads/.gitignore vendored Normal file
View file

@ -0,0 +1,2 @@
*
!.gitignore

295
yarn.lock
View file

@ -293,6 +293,11 @@
resolved "https://registry.yarnpkg.com/@esbuild/win32-x64/-/win32-x64-0.19.12.tgz#c57c8afbb4054a3ab8317591a0b7320360b444ae"
integrity sha512-T1QyPSDCyMXaO3pzBkF96E8xMkiRYbUEZADd29SyPGabqxMViNoii+NcK7eWJAEoU6RZyEm5lVSIjTmcdoB9HA==
"@google/generative-ai@^0.7.0":
version "0.7.1"
resolved "https://registry.yarnpkg.com/@google/generative-ai/-/generative-ai-0.7.1.tgz#eb187c75080c0706245699dbc06816c830d8c6a7"
integrity sha512-WTjMLLYL/xfA5BW6xAycRPiAX7FNHKAxrid/ayqC1QMam0KAK0NbMeS9Lubw80gVg5xFMLE+H7pw4wdNzTOlxw==
"@huggingface/jinja@^0.2.2":
version "0.2.2"
resolved "https://registry.yarnpkg.com/@huggingface/jinja/-/jinja-0.2.2.tgz#faeb205a9d6995089bef52655ddd8245d3190627"
@ -380,6 +385,23 @@
zod "^3.22.4"
zod-to-json-schema "^3.22.3"
"@langchain/core@>=0.2.16 <0.3.0":
version "0.2.36"
resolved "https://registry.yarnpkg.com/@langchain/core/-/core-0.2.36.tgz#75754c33aa5b9310dcf117047374a1ae011005a4"
integrity sha512-qHLvScqERDeH7y2cLuJaSAlMwg3f/3Oc9nayRSXRU2UuaK/SOhI42cxiPLj1FnuHJSmN0rBQFkrLx02gI4mcVg==
dependencies:
ansi-styles "^5.0.0"
camelcase "6"
decamelize "1.2.0"
js-tiktoken "^1.0.12"
langsmith "^0.1.56-rc.1"
mustache "^4.2.0"
p-queue "^6.6.2"
p-retry "4"
uuid "^10.0.0"
zod "^3.22.4"
zod-to-json-schema "^3.22.3"
"@langchain/core@>=0.2.9 <0.3.0":
version "0.2.15"
resolved "https://registry.yarnpkg.com/@langchain/core/-/core-0.2.15.tgz#1bb99ac4fffe935c7ba37edcaa91abfba3c82219"
@ -415,6 +437,15 @@
zod "^3.22.4"
zod-to-json-schema "^3.22.3"
"@langchain/google-genai@^0.0.23":
version "0.0.23"
resolved "https://registry.yarnpkg.com/@langchain/google-genai/-/google-genai-0.0.23.tgz#e73af501bc1df4c7642b531759b82dc3eb7ae459"
integrity sha512-MTSCJEoKsfU1inz0PWvAjITdNFM4s41uvBCwLpcgx3jWJIEisczFD82x86ahYqJlb2fD6tohYSaCH/4tKAdkXA==
dependencies:
"@google/generative-ai" "^0.7.0"
"@langchain/core" ">=0.2.16 <0.3.0"
zod-to-json-schema "^3.22.4"
"@langchain/openai@^0.0.25", "@langchain/openai@~0.0.19":
version "0.0.25"
resolved "https://registry.yarnpkg.com/@langchain/openai/-/openai-0.0.25.tgz#8332abea1e3acb9b1169f90636e518c0ee90622e"
@ -576,6 +607,26 @@
"@types/range-parser" "*"
"@types/send" "*"
"@types/express-serve-static-core@^5.0.0":
version "5.0.1"
resolved "https://registry.yarnpkg.com/@types/express-serve-static-core/-/express-serve-static-core-5.0.1.tgz#3c9997ae9d00bc236e45c6374e84f2596458d9db"
integrity sha512-CRICJIl0N5cXDONAdlTv5ShATZ4HEwk6kDDIW2/w9qOWKg+NU/5F8wYRWCrONad0/UKkloNSmmyN/wX4rtpbVA==
dependencies:
"@types/node" "*"
"@types/qs" "*"
"@types/range-parser" "*"
"@types/send" "*"
"@types/express@*":
version "5.0.0"
resolved "https://registry.yarnpkg.com/@types/express/-/express-5.0.0.tgz#13a7d1f75295e90d19ed6e74cab3678488eaa96c"
integrity sha512-DvZriSMehGHL1ZNLzi6MidnsDhUZM/x2pRdDIKdwbUNqqwHxMlRdkxtn6/EPKyqKpHqTl/4nRZsRNLpZxZRpPQ==
dependencies:
"@types/body-parser" "*"
"@types/express-serve-static-core" "^5.0.0"
"@types/qs" "*"
"@types/serve-static" "*"
"@types/express@^4.17.21":
version "4.17.21"
resolved "https://registry.yarnpkg.com/@types/express/-/express-4.17.21.tgz#c26d4a151e60efe0084b23dc3369ebc631ed192d"
@ -606,6 +657,13 @@
resolved "https://registry.yarnpkg.com/@types/mime/-/mime-1.3.5.tgz#1ef302e01cf7d2b5a0fa526790c9123bf1d06690"
integrity sha512-/pyBZWSLD2n0dcHE3hq8s8ZvcETHtEuF+3E7XVt0Ig2nvsVQXdghHVcEkIWjy9A0wKfTn97a/PSDYohKIlnP/w==
"@types/multer@^1.4.12":
version "1.4.12"
resolved "https://registry.yarnpkg.com/@types/multer/-/multer-1.4.12.tgz#da67bd0c809f3a63fe097c458c0d4af1fea50ab7"
integrity sha512-pQ2hoqvXiJt2FP9WQVLPRO+AmiIm/ZYkavPlIQnx282u4ZrVdztx0pkh3jjpQt0Kz+YI0YhSG264y08UJKoUQg==
dependencies:
"@types/express" "*"
"@types/node-fetch@^2.6.4":
version "2.6.11"
resolved "https://registry.yarnpkg.com/@types/node-fetch/-/node-fetch-2.6.11.tgz#9b39b78665dae0e82a08f02f4967d62c66f95d24"
@ -685,6 +743,11 @@
resolved "https://registry.yarnpkg.com/@types/triple-beam/-/triple-beam-1.3.5.tgz#74fef9ffbaa198eb8b588be029f38b00299caa2c"
integrity sha512-6WaYesThRMCl19iryMYP7/x2OVgCtbIVflDGFpWnb9irXI3UjYE4AzmYuiUKY1AJstGijoY+MgUszMgRxIYTYw==
"@types/uuid@^10.0.0":
version "10.0.0"
resolved "https://registry.yarnpkg.com/@types/uuid/-/uuid-10.0.0.tgz#e9c07fe50da0f53dc24970cca94d619ff03f6f6d"
integrity sha512-7gqG38EyHgyP1S+7+xomFtL+ZNHcKv6DwNaCZmJmo1vgMugyF3TCnXVg4t1uk89mLNwnLtnY3TpOpCOyp1/xHQ==
"@types/uuid@^9.0.1":
version "9.0.8"
resolved "https://registry.yarnpkg.com/@types/uuid/-/uuid-9.0.8.tgz#7545ba4fc3c003d6c756f651f3bf163d8f0f29ba"
@ -708,6 +771,11 @@
optionalDependencies:
onnxruntime-node "1.14.0"
"@xmldom/xmldom@^0.8.6":
version "0.8.10"
resolved "https://registry.yarnpkg.com/@xmldom/xmldom/-/xmldom-0.8.10.tgz#a1337ca426aa61cef9fe15b5b28e340a72f6fa99"
integrity sha512-2WALfTl4xo2SkGCYRt6rDTFfk9R1czmBvUQy12gK2KuRKIpWEhcbbzy8EZXtz/jkRqHX8bFEc6FC1HjX4TUWYw==
abbrev@1:
version "1.1.1"
resolved "https://registry.yarnpkg.com/abbrev/-/abbrev-1.1.1.tgz#f8f2c887ad10bf67f634f005b6987fed3179aac8"
@ -758,6 +826,11 @@ anymatch@~3.1.2:
normalize-path "^3.0.0"
picomatch "^2.0.4"
append-field@^1.0.0:
version "1.0.0"
resolved "https://registry.yarnpkg.com/append-field/-/append-field-1.0.0.tgz#1e3440e915f0b1203d23748e78edd7b9b5b43e56"
integrity sha512-klpgFSWLW1ZEs8svjfb7g4qWY0YS5imI82dTg+QahUvJ8YqAY0P10Uk8tTyh9ZGuYEZEMaeJYCF5BFuX552hsw==
arg@^4.1.0:
version "4.1.3"
resolved "https://registry.yarnpkg.com/arg/-/arg-4.1.3.tgz#269fc7ad5b8e42cb63c896d5666017261c144089"
@ -768,6 +841,13 @@ argparse@^2.0.1:
resolved "https://registry.yarnpkg.com/argparse/-/argparse-2.0.1.tgz#246f50f3ca78a3240f6c997e8a9bd1eac49e4b38"
integrity sha512-8+9WqebbFzpX9OR+Wa6O29asIogeRMzcGtAINdpMHHyAg10f05aSFVBbcEqGf/PXw1EjAZ+q2/bEBg3DvurK3Q==
argparse@~1.0.3:
version "1.0.10"
resolved "https://registry.yarnpkg.com/argparse/-/argparse-1.0.10.tgz#bcd6791ea5ae09725e17e5ad988134cd40b3d911"
integrity sha512-o5Roy6tNG4SL/FOkCAN6RzjiakZS25RLYFrcMttJqbdd8BWrnA+fGz57iN5Pb06pvBGvl5gQ0B48dJlslXvoTg==
dependencies:
sprintf-js "~1.0.2"
array-flatten@1.1.1:
version "1.1.1"
resolved "https://registry.yarnpkg.com/array-flatten/-/array-flatten-1.1.1.tgz#9a5f699051b1e7073328f2a008968b64ea2955d2"
@ -879,6 +959,11 @@ bl@^4.0.3:
inherits "^2.0.4"
readable-stream "^3.4.0"
bluebird@~3.4.0:
version "3.4.7"
resolved "https://registry.yarnpkg.com/bluebird/-/bluebird-3.4.7.tgz#f72d760be09b7f76d08ed8fae98b289a8d05fab3"
integrity sha512-iD3898SR7sWVRHbiQv+sHUtHnMvC1o3nW5rAcqnq3uOn07DSAppZYUkIGslDz6gXC7HfunPe7YVBgoEJASPcHA==
body-parser@1.20.2:
version "1.20.2"
resolved "https://registry.yarnpkg.com/body-parser/-/body-parser-1.20.2.tgz#6feb0e21c4724d06de7ff38da36dad4f57a747fd"
@ -925,6 +1010,13 @@ buffer@^5.5.0:
base64-js "^1.3.1"
ieee754 "^1.1.13"
busboy@^1.0.0:
version "1.6.0"
resolved "https://registry.yarnpkg.com/busboy/-/busboy-1.6.0.tgz#966ea36a9502e43cdb9146962523b92f531f6893"
integrity sha512-8SFQbg/0hQ9xy3UNTB0YEnsNBbWfhf7RtnzpL7TkBiTBRfrQ9Fxcnz7VJsleJpyp6rVLvXiuORqjlHi5q+PYuA==
dependencies:
streamsearch "^1.1.0"
bytes@3.1.2:
version "3.1.2"
resolved "https://registry.yarnpkg.com/bytes/-/bytes-3.1.2.tgz#8b0beeb98605adf1b128fa4386403c009e0221a5"
@ -1070,6 +1162,16 @@ concat-map@0.0.1:
resolved "https://registry.yarnpkg.com/concat-map/-/concat-map-0.0.1.tgz#d8a96bd77fd68df7793a73036a3ba0d5405d477b"
integrity sha512-/Srv4dswyQNBfohGpz9o6Yb3Gz3SrUDqBH5rTuhGR7ahtlbYKnVxw2bCFMRljaA7EXHaXZ8wsHdodFvbkhKmqg==
concat-stream@^1.5.2:
version "1.6.2"
resolved "https://registry.yarnpkg.com/concat-stream/-/concat-stream-1.6.2.tgz#904bdf194cd3122fc675c77fc4ac3d4ff0fd1a34"
integrity sha512-27HBghJxjiZtIk3Ycvn/4kbJk/1uZuJFfuPEns6LaEvpvG1f0hTea8lilrouyo9mVc2GWdcEZ8OLoGmSADlrCw==
dependencies:
buffer-from "^1.0.0"
inherits "^2.0.3"
readable-stream "^2.2.2"
typedarray "^0.0.6"
content-disposition@0.5.4:
version "0.5.4"
resolved "https://registry.yarnpkg.com/content-disposition/-/content-disposition-0.5.4.tgz#8b82b4efac82512a02bb0b1dcec9d2c5e8eb5bfe"
@ -1092,6 +1194,11 @@ cookie@0.6.0:
resolved "https://registry.yarnpkg.com/cookie/-/cookie-0.6.0.tgz#2798b04b071b0ecbff0dbb62a505a8efa4e19051"
integrity sha512-U71cyTamuh1CRNCfpGY6to28lxvNwPG4Guz/EVjgf3Jmzv0vlDp1atT9eS5dDjMYHucpHbWns6Lwf3BKz6svdw==
core-util-is@~1.0.0:
version "1.0.3"
resolved "https://registry.yarnpkg.com/core-util-is/-/core-util-is-1.0.3.tgz#a6042d3634c2b27e9328f837b965fac83808db85"
integrity sha512-ZQBvi1DcpJ4GDqanjucZ2Hj3wEO5pZDS89BWbkcrvdxksJorwUDDZamX9ldFkp9aw2lmBDLgkObEA4DWNJ9FYQ==
cors@^2.8.5:
version "2.8.5"
resolved "https://registry.yarnpkg.com/cors/-/cors-2.8.5.tgz#eac11da51592dd86b9f06f6e7ac293b3df875d29"
@ -1202,6 +1309,11 @@ digest-fetch@^1.3.0:
base-64 "^0.1.0"
md5 "^2.3.0"
dingbat-to-unicode@^1.0.1:
version "1.0.1"
resolved "https://registry.yarnpkg.com/dingbat-to-unicode/-/dingbat-to-unicode-1.0.1.tgz#5091dd673241453e6b5865e26e5a4452cdef5c83"
integrity sha512-98l0sW87ZT58pU4i61wa2OHwxbiYSbuxsCBozaVnYX2iCnr3bLM3fIes1/ej7h1YdOKuKt/MLs706TVnALA65w==
dom-serializer@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/dom-serializer/-/dom-serializer-2.0.0.tgz#e41b802e1eedf9f6cae183ce5e622d789d7d8e53"
@ -1251,6 +1363,13 @@ drizzle-orm@^0.31.2:
resolved "https://registry.yarnpkg.com/drizzle-orm/-/drizzle-orm-0.31.2.tgz#221a257dd487bab49ddb88a17bd82388600cf655"
integrity sha512-QnenevbnnAzmbNzQwbhklvIYrDE8YER8K7kSrAWQSV1YvFCdSQPzj+jzqRdTSsV2cDqSpQ0NXGyL1G9I43LDLg==
duck@^0.1.12:
version "0.1.12"
resolved "https://registry.yarnpkg.com/duck/-/duck-0.1.12.tgz#de7adf758421230b6d7aee799ce42670586b9efa"
integrity sha512-wkctla1O6VfP89gQ+J/yDesM0S7B7XLXjKGzXxMDVFg7uEn706niAtyYovKbyq1oT9YwDcly721/iUWoc8MVRg==
dependencies:
underscore "^1.13.1"
ee-first@1.1.1:
version "1.1.1"
resolved "https://registry.yarnpkg.com/ee-first/-/ee-first-1.1.1.tgz#590c61156b0ae2f4f0255732a158b266bc56b21d"
@ -1657,7 +1776,12 @@ ignore-by-default@^1.0.1:
resolved "https://registry.yarnpkg.com/ignore-by-default/-/ignore-by-default-1.0.1.tgz#48ca6d72f6c6a3af00a9ad4ae6876be3889e2b09"
integrity sha512-Ius2VYcGNk7T90CppJqcIkS5ooHUZyIQK+ClZfMfMNFEF9VSE73Fq+906u/CWu92x4gzZMWOwfFYckPObzdEbA==
inherits@2.0.4, inherits@^2.0.3, inherits@^2.0.4:
immediate@~3.0.5:
version "3.0.6"
resolved "https://registry.yarnpkg.com/immediate/-/immediate-3.0.6.tgz#9db1dbd0faf8de6fbe0f5dd5e56bb606280de69b"
integrity sha512-XXOFtyqDjNDAQxVfYxuF7g9Il/IbWmmlQg2MYKOH8ExIT1qg6xc4zyS3HaEEATgs1btfzxq15ciUiY7gjSXRGQ==
inherits@2.0.4, inherits@^2.0.3, inherits@^2.0.4, inherits@~2.0.3:
version "2.0.4"
resolved "https://registry.yarnpkg.com/inherits/-/inherits-2.0.4.tgz#0fa2c64f932917c3433a0ded55363aae37416b7c"
integrity sha512-k/vGaX4/Yla3WzyMCvTQOXYeIHvqOKtnqBduzTHpzpQZzAskKMhZ2K+EnBiSM9zGSoIFeMpXKxa4dYeZIQqewQ==
@ -1716,6 +1840,11 @@ is-stream@^2.0.0:
resolved "https://registry.yarnpkg.com/is-stream/-/is-stream-2.0.1.tgz#fac1e3d53b97ad5a9d0ae9cef2389f5810a5c077"
integrity sha512-hFoiJiTl63nn+kstHGBtewWSKnQLpyb155KHheA1l39uvtO9nWIop1p3udqPcUd/xbF1VLMO4n7OI6p7RbngDg==
isarray@~1.0.0:
version "1.0.0"
resolved "https://registry.yarnpkg.com/isarray/-/isarray-1.0.0.tgz#bb935d48582cba168c06834957a54a3e07124f11"
integrity sha512-VLghIWNM6ELQzo7zwmcg0NmTVyWKYjvIeM83yjp0wRDTmUnrM678fQbcKBo6n2CJEF0szoG//ytg+TKla89ALQ==
js-tiktoken@^1.0.12:
version "1.0.12"
resolved "https://registry.yarnpkg.com/js-tiktoken/-/js-tiktoken-1.0.12.tgz#af0f5cf58e5e7318240d050c8413234019424211"
@ -1742,6 +1871,16 @@ jsonpointer@^5.0.1:
resolved "https://registry.yarnpkg.com/jsonpointer/-/jsonpointer-5.0.1.tgz#2110e0af0900fd37467b5907ecd13a7884a1b559"
integrity sha512-p/nXbhSEcu3pZRdkW1OfJhpsVtW1gd4Wa1fnQc9YLiTfAjn0312eMKimbdIQzuZl9aa9xUGaRlP9T/CJE/ditQ==
jszip@^3.7.1:
version "3.10.1"
resolved "https://registry.yarnpkg.com/jszip/-/jszip-3.10.1.tgz#34aee70eb18ea1faec2f589208a157d1feb091c2"
integrity sha512-xXDvecyTpGLrqFrvkrUSoxxfJI5AH7U8zxxtVclpsUtMCq4JQ290LY8AW5c7Ggnr/Y/oK+bQMbqK2qmtk3pN4g==
dependencies:
lie "~3.3.0"
pako "~1.0.2"
readable-stream "~2.3.6"
setimmediate "^1.0.5"
kuler@^2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/kuler/-/kuler-2.0.0.tgz#e2c570a3800388fb44407e851531c1d670b061b3"
@ -1797,6 +1936,18 @@ langchainhub@~0.0.8:
resolved "https://registry.yarnpkg.com/langchainhub/-/langchainhub-0.0.8.tgz#fd4b96dc795e22e36c1a20bad31b61b0c33d3110"
integrity sha512-Woyb8YDHgqqTOZvWIbm2CaFDGfZ4NTSyXV687AG4vXEfoNo7cGQp7nhl7wL3ehenKWmNEmcxCLgOZzW8jE6lOQ==
langsmith@^0.1.56-rc.1:
version "0.1.68"
resolved "https://registry.yarnpkg.com/langsmith/-/langsmith-0.1.68.tgz#848332e822fe5e6734a07f1c36b6530cc1798afb"
integrity sha512-otmiysWtVAqzMx3CJ4PrtUBhWRG5Co8Z4o7hSZENPjlit9/j3/vm3TSvbaxpDYakZxtMjhkcJTqrdYFipISEiQ==
dependencies:
"@types/uuid" "^10.0.0"
commander "^10.0.1"
p-queue "^6.6.2"
p-retry "4"
semver "^7.6.3"
uuid "^10.0.0"
langsmith@~0.1.1, langsmith@~0.1.7:
version "0.1.14"
resolved "https://registry.yarnpkg.com/langsmith/-/langsmith-0.1.14.tgz#2b889dbcfb49547614df276a4a5a063092a1585d"
@ -1825,6 +1976,13 @@ leac@^0.6.0:
resolved "https://registry.yarnpkg.com/leac/-/leac-0.6.0.tgz#dcf136e382e666bd2475f44a1096061b70dc0912"
integrity sha512-y+SqErxb8h7nE/fiEX07jsbuhrpO9lL8eca7/Y1nuWV2moNlXhyd59iDGcRf6moVyDMbmTNzL40SUyrFU/yDpg==
lie@~3.3.0:
version "3.3.0"
resolved "https://registry.yarnpkg.com/lie/-/lie-3.3.0.tgz#dcf82dee545f46074daf200c7c1c5a08e0f40f6a"
integrity sha512-UaiMJzeWRlEujzAuw5LokY1L5ecNQYZKfmyZ9L7wDHb/p5etKaxXhohBcrw0EYby+G/NA52vRSN4N39dxHAIwQ==
dependencies:
immediate "~3.0.5"
lodash.set@^4.3.2:
version "4.3.2"
resolved "https://registry.yarnpkg.com/lodash.set/-/lodash.set-4.3.2.tgz#d8757b1da807dde24816b0d6a84bea1a76230b23"
@ -1847,6 +2005,15 @@ long@^4.0.0:
resolved "https://registry.yarnpkg.com/long/-/long-4.0.0.tgz#9a7b71cfb7d361a194ea555241c92f7468d5bf28"
integrity sha512-XsP+KhQif4bjX1kbuSiySJFNAehNxgLb6hPRGJ9QsUr8ajHkuXGdrHmFUTUUXhDwVX2R5bY4JNZEwbUiMhV+MA==
lop@^0.4.1:
version "0.4.2"
resolved "https://registry.yarnpkg.com/lop/-/lop-0.4.2.tgz#c9c2f958a39b9da1c2f36ca9ad66891a9fe84640"
integrity sha512-RefILVDQ4DKoRZsJ4Pj22TxE3omDO47yFpkIBoDKzkqPRISs5U1cnAdg/5583YPkWPaLIYHOKRMQSvjFsO26cw==
dependencies:
duck "^0.1.12"
option "~0.2.1"
underscore "^1.13.1"
lru-cache@^6.0.0:
version "6.0.0"
resolved "https://registry.yarnpkg.com/lru-cache/-/lru-cache-6.0.0.tgz#6d6fe6570ebd96aaf90fcad1dafa3b2566db3a94"
@ -1859,6 +2026,22 @@ make-error@^1.1.1:
resolved "https://registry.yarnpkg.com/make-error/-/make-error-1.3.6.tgz#2eb2e37ea9b67c4891f684a1394799af484cf7a2"
integrity sha512-s8UhlNe7vPKomQhC1qFelMokr/Sc3AgNbso3n74mVPA5LTZwkB9NlXf4XPamLxJE8h0gh73rM94xvwRT2CVInw==
mammoth@^1.8.0:
version "1.8.0"
resolved "https://registry.yarnpkg.com/mammoth/-/mammoth-1.8.0.tgz#d8f1b0d3a0355fda129270346e9dc853f223028f"
integrity sha512-pJNfxSk9IEGVpau+tsZFz22ofjUsl2mnA5eT8PjPs2n0BP+rhVte4Nez6FdgEuxv3IGI3afiV46ImKqTGDVlbA==
dependencies:
"@xmldom/xmldom" "^0.8.6"
argparse "~1.0.3"
base64-js "^1.5.1"
bluebird "~3.4.0"
dingbat-to-unicode "^1.0.1"
jszip "^3.7.1"
lop "^0.4.1"
path-is-absolute "^1.0.0"
underscore "^1.13.1"
xmlbuilder "^10.0.0"
md5@^2.3.0:
version "2.3.0"
resolved "https://registry.yarnpkg.com/md5/-/md5-2.3.0.tgz#c3da9a6aae3a30b46b7b0c349b87b110dc3bda4f"
@ -1912,7 +2095,7 @@ minimatch@^3.1.2:
dependencies:
brace-expansion "^1.1.7"
minimist@^1.2.0, minimist@^1.2.3:
minimist@^1.2.0, minimist@^1.2.3, minimist@^1.2.6:
version "1.2.8"
resolved "https://registry.yarnpkg.com/minimist/-/minimist-1.2.8.tgz#c1a464e7693302e082a075cee0c057741ac4772c"
integrity sha512-2yyAR8qBkN3YuheJanUpWC5U3bb5osDywNB8RzDVlDwDHbocAJveqqj1u8+SVD7jkWT4yvsHCpWqqWqAxb0zCA==
@ -1922,6 +2105,13 @@ mkdirp-classic@^0.5.2, mkdirp-classic@^0.5.3:
resolved "https://registry.yarnpkg.com/mkdirp-classic/-/mkdirp-classic-0.5.3.tgz#fa10c9115cc6d8865be221ba47ee9bed78601113"
integrity sha512-gKLcREMhtuZRwRAfqP3RFW+TK4JqApVBtOIftVgjuABpAtpxhPGaDcfvbhNvD0B8iD1oUr/txX35NjcaY6Ns/A==
mkdirp@^0.5.4:
version "0.5.6"
resolved "https://registry.yarnpkg.com/mkdirp/-/mkdirp-0.5.6.tgz#7def03d2432dcae4ba1d611445c48396062255f6"
integrity sha512-FP+p8RB8OWpF3YZBCrP5gtADmtXApB5AMLn+vdyA+PyxCjrCs00mjyUozssO33cwDeT3wNGdLxJ5M//YqtHAJw==
dependencies:
minimist "^1.2.6"
ml-array-mean@^1.1.6:
version "1.1.6"
resolved "https://registry.yarnpkg.com/ml-array-mean/-/ml-array-mean-1.1.6.tgz#d951a700dc8e3a17b3e0a583c2c64abd0c619c56"
@ -1973,6 +2163,19 @@ ms@2.1.3, ms@^2.0.0, ms@^2.1.1:
resolved "https://registry.yarnpkg.com/ms/-/ms-2.1.3.tgz#574c8138ce1d2b5861f0b44579dbadd60c6615b2"
integrity sha512-6FlzubTLZG3J2a/NVCAleEhjzq5oxgHyaCU9yYXvcLsvoVaHJq/s5xXI6/XXP6tz7R9xAOtHnSO/tXtF3WRTlA==
multer@^1.4.5-lts.1:
version "1.4.5-lts.1"
resolved "https://registry.yarnpkg.com/multer/-/multer-1.4.5-lts.1.tgz#803e24ad1984f58edffbc79f56e305aec5cfd1ac"
integrity sha512-ywPWvcDMeH+z9gQq5qYHCCy+ethsk4goepZ45GLD63fOu0YcNecQxi64nDs3qluZB+murG3/D4dJ7+dGctcCQQ==
dependencies:
append-field "^1.0.0"
busboy "^1.0.0"
concat-stream "^1.5.2"
mkdirp "^0.5.4"
object-assign "^4.1.1"
type-is "^1.6.4"
xtend "^4.0.0"
mustache@^4.2.0:
version "4.2.0"
resolved "https://registry.yarnpkg.com/mustache/-/mustache-4.2.0.tgz#e5892324d60a12ec9c2a73359edca52972bf6f64"
@ -2050,7 +2253,7 @@ num-sort@^2.0.0:
resolved "https://registry.yarnpkg.com/num-sort/-/num-sort-2.1.0.tgz#1cbb37aed071329fdf41151258bc011898577a9b"
integrity sha512-1MQz1Ed8z2yckoBeSfkQHHO9K1yDRxxtotKSJ9yvcTUUxSvfvzEq5GwBrjjHEpMlq/k5gvXdmJ1SbYxWtpNoVg==
object-assign@^4:
object-assign@^4, object-assign@^4.1.1:
version "4.1.1"
resolved "https://registry.yarnpkg.com/object-assign/-/object-assign-4.1.1.tgz#2109adc7965887cfc05cbbd442cac8bfbb360863"
integrity sha512-rJgTQnkUnH1sFw8yT6VSU3zD3sWmu6sZhIseY8VX+GRu3P6F7Fu+JNDoXfklElbLJSnc3FUQHVe4cU5hj+BcUg==
@ -2146,6 +2349,11 @@ openapi-types@^12.1.3:
resolved "https://registry.yarnpkg.com/openapi-types/-/openapi-types-12.1.3.tgz#471995eb26c4b97b7bd356aacf7b91b73e777dd3"
integrity sha512-N4YtSYJqghVu4iek2ZUvcN/0aqH1kRDuNqzcycDxhOUpg7GdvLa2F3DgS6yBNhInhv2r/6I0Flkn7CqL8+nIcw==
option@~0.2.1:
version "0.2.4"
resolved "https://registry.yarnpkg.com/option/-/option-0.2.4.tgz#fd475cdf98dcabb3cb397a3ba5284feb45edbfe4"
integrity sha512-pkEqbDyl8ou5cpq+VsnQbe/WlEy5qS7xPzMS1U55OCG9KPvwFD46zDbxQIj3egJSFc3D+XhYOPUzz49zQAVy7A==
p-finally@^1.0.0:
version "1.0.0"
resolved "https://registry.yarnpkg.com/p-finally/-/p-finally-1.0.0.tgz#3fbcfb15b899a44123b34b6dcc18b724336a2cae"
@ -2174,6 +2382,11 @@ p-timeout@^3.2.0:
dependencies:
p-finally "^1.0.0"
pako@~1.0.2:
version "1.0.11"
resolved "https://registry.yarnpkg.com/pako/-/pako-1.0.11.tgz#6c9599d340d54dfd3946380252a35705a6b992bf"
integrity sha512-4hLB8Py4zZce5s4yd9XzopqwVv/yGNhV1Bl8NTmCq1763HeK2+EwVTv+leGeL13Dnh2wfbqowVPXCIO0z4taYw==
parseley@^0.12.0:
version "0.12.1"
resolved "https://registry.yarnpkg.com/parseley/-/parseley-0.12.1.tgz#4afd561d50215ebe259e3e7a853e62f600683aef"
@ -2187,6 +2400,11 @@ parseurl@~1.3.3:
resolved "https://registry.yarnpkg.com/parseurl/-/parseurl-1.3.3.tgz#9da19e7bee8d12dff0513ed5b76957793bc2e8d4"
integrity sha512-CiyeOxFT/JZyN5m0z9PfXw4SCBJ6Sygz1Dpl0wqjlhDEGGBP1GnsUVEL0p63hoG1fcj3fHynXi9NYO4nWOL+qQ==
path-is-absolute@^1.0.0:
version "1.0.1"
resolved "https://registry.yarnpkg.com/path-is-absolute/-/path-is-absolute-1.0.1.tgz#174b9268735534ffbc7ace6bf53a5a9e1b5c5f5f"
integrity sha512-AVbw3UJ2e9bq64vSaS9Am0fje1Pa8pbGqTTsmXfaIiMpnr5DlDhfJOuLj9Sf95ZPVDAUerDfEk88MPmPe7UCQg==
path-to-regexp@0.1.7:
version "0.1.7"
resolved "https://registry.yarnpkg.com/path-to-regexp/-/path-to-regexp-0.1.7.tgz#df604178005f522f15eb4490e7247a1bfaa67f8c"
@ -2238,6 +2456,11 @@ prettier@^3.2.5:
resolved "https://registry.yarnpkg.com/prettier/-/prettier-3.2.5.tgz#e52bc3090586e824964a8813b09aba6233b28368"
integrity sha512-3/GWa9aOC0YeD7LUfvOG2NiDyhOWRvt1k+rcKhOuYnMY24iiCphgneUfJDyFXd6rZCAnuLBv6UeAULtrhT/F4A==
process-nextick-args@~2.0.0:
version "2.0.1"
resolved "https://registry.yarnpkg.com/process-nextick-args/-/process-nextick-args-2.0.1.tgz#7820d9b16120cc55ca9ae7792680ae7dba6d7fe2"
integrity sha512-3ouUOpQhtgrbOa17J7+uxOTpITYWaGP7/AhoR3+A+/1e9skrzelGi/dXzEYyvbxubEF6Wn2ypscTKiKJFFn1ag==
protobufjs@^6.8.8:
version "6.11.4"
resolved "https://registry.yarnpkg.com/protobufjs/-/protobufjs-6.11.4.tgz#29a412c38bf70d89e537b6d02d904a6f448173aa"
@ -2320,6 +2543,19 @@ rc@^1.2.7:
minimist "^1.2.0"
strip-json-comments "~2.0.1"
readable-stream@^2.2.2, readable-stream@~2.3.6:
version "2.3.8"
resolved "https://registry.yarnpkg.com/readable-stream/-/readable-stream-2.3.8.tgz#91125e8042bba1b9887f49345f6277027ce8be9b"
integrity sha512-8p0AUk4XODgIewSi0l8Epjs+EVnWiK7NoDIEGU0HhE7+ZyY8D1IMY7odu5lRrFXGg71L15KG8QrPmum45RTtdA==
dependencies:
core-util-is "~1.0.0"
inherits "~2.0.3"
isarray "~1.0.0"
process-nextick-args "~2.0.0"
safe-buffer "~5.1.1"
string_decoder "~1.1.1"
util-deprecate "~1.0.1"
readable-stream@^3.1.1, readable-stream@^3.4.0, readable-stream@^3.6.0:
version "3.6.2"
resolved "https://registry.yarnpkg.com/readable-stream/-/readable-stream-3.6.2.tgz#56a9b36ea965c00c5a93ef31eb111a0f11056967"
@ -2351,7 +2587,7 @@ safe-buffer@5.2.1, safe-buffer@^5.0.1, safe-buffer@~5.2.0:
resolved "https://registry.yarnpkg.com/safe-buffer/-/safe-buffer-5.2.1.tgz#1eaf9fa9bdb1fdd4ec75f58f9cdb4e6b7827eec6"
integrity sha512-rp3So07KcdmmKbGvgaNxQSJr7bGVSVk5S9Eq1F+ppbRo70+YeaDxkw5Dd8NPN+GD6bjnYm2VuPuCXmpuYvmCXQ==
safe-buffer@~5.1.1:
safe-buffer@~5.1.0, safe-buffer@~5.1.1:
version "5.1.2"
resolved "https://registry.yarnpkg.com/safe-buffer/-/safe-buffer-5.1.2.tgz#991ec69d296e0313747d59bdfd2b745c35f8828d"
integrity sha512-Gd2UZBJDkXlY7GbJxfsE8/nvKkUEU1G38c1siN6QP6a9PT9MmHB8GnpscSmMJSoF8LOIrt8ud/wPtojys4G6+g==
@ -2380,6 +2616,11 @@ semver@^7.3.5, semver@^7.5.3, semver@^7.5.4:
dependencies:
lru-cache "^6.0.0"
semver@^7.6.3:
version "7.6.3"
resolved "https://registry.yarnpkg.com/semver/-/semver-7.6.3.tgz#980f7b5550bc175fb4dc09403085627f9eb33143"
integrity sha512-oVekP1cKtI+CTDvHWYFUcMtsK/00wmAEfyqKfNdARm8u1wNVhSgaX7A8d4UuIlUI5e84iEwOhs7ZPYRmzU9U6A==
send@0.18.0:
version "0.18.0"
resolved "https://registry.yarnpkg.com/send/-/send-0.18.0.tgz#670167cc654b05f5aa4a767f9113bb371bc706be"
@ -2421,6 +2662,11 @@ set-function-length@^1.2.1:
gopd "^1.0.1"
has-property-descriptors "^1.0.2"
setimmediate@^1.0.5:
version "1.0.5"
resolved "https://registry.yarnpkg.com/setimmediate/-/setimmediate-1.0.5.tgz#290cbb232e306942d7d7ea9b83732ab7856f8285"
integrity sha512-MATJdZp8sLqDl/68LfQmbP8zKPLQNV6BIZoIgrscFDQ+RsvK/BxeDQOgyxKKoh0y/8h3BqVFnCqQ/gd+reiIXA==
setprototypeof@1.2.0:
version "1.2.0"
resolved "https://registry.yarnpkg.com/setprototypeof/-/setprototypeof-1.2.0.tgz#66c9a24a73f9fc28cbe66b09fed3d33dcaf1b424"
@ -2491,6 +2737,11 @@ source-map@^0.6.0:
resolved "https://registry.yarnpkg.com/source-map/-/source-map-0.6.1.tgz#74722af32e9614e9c287a8d0bbde48b5e2f1a263"
integrity sha512-UjgapumWlbMhkBgzT7Ykc5YXUT46F0iKu8SGXq0bcwP5dz/h0Plj6enJqjz1Zbq2l5WaqYnrVbwWOWMyF3F47g==
sprintf-js@~1.0.2:
version "1.0.3"
resolved "https://registry.yarnpkg.com/sprintf-js/-/sprintf-js-1.0.3.tgz#04e6926f662895354f3dd015203633b857297e2c"
integrity sha512-D9cPgkvLlV3t3IzL0D0YLvGA9Ahk4PcvVwUbN0dSGr1aP0Nrt4AEnTUbuGvquEC0mA64Gqt1fzirlRs5ibXx8g==
stack-trace@0.0.x:
version "0.0.10"
resolved "https://registry.yarnpkg.com/stack-trace/-/stack-trace-0.0.10.tgz#547c70b347e8d32b4e108ea1a2a159e5fdde19c0"
@ -2501,6 +2752,11 @@ statuses@2.0.1:
resolved "https://registry.yarnpkg.com/statuses/-/statuses-2.0.1.tgz#55cb000ccf1d48728bd23c685a063998cf1a1b63"
integrity sha512-RwNA9Z/7PrK06rYLIzFMlaF+l73iwpzsqRIFgbMLbTcLD6cOao82TaWefPXQvB2fOC4AjuYSEndS7N/mTCbkdQ==
streamsearch@^1.1.0:
version "1.1.0"
resolved "https://registry.yarnpkg.com/streamsearch/-/streamsearch-1.1.0.tgz#404dd1e2247ca94af554e841a8ef0eaa238da764"
integrity sha512-Mcc5wHehp9aXz1ax6bZUyY5afg9u2rv5cqQI3mRrYkGC8rW2hM02jWuwjtL++LS5qinSyhj2QfLyNsuc+VsExg==
streamx@^2.15.0, streamx@^2.16.1:
version "2.16.1"
resolved "https://registry.yarnpkg.com/streamx/-/streamx-2.16.1.tgz#2b311bd34832f08aa6bb4d6a80297c9caef89614"
@ -2518,6 +2774,13 @@ string_decoder@^1.1.1:
dependencies:
safe-buffer "~5.2.0"
string_decoder@~1.1.1:
version "1.1.1"
resolved "https://registry.yarnpkg.com/string_decoder/-/string_decoder-1.1.1.tgz#9cf1611ba62685d7030ae9e4ba34149c3af03fc8"
integrity sha512-n/ShnvDi6FHbbVfviro+WojiFzv+s8MPMHBczVePfUpDJLwoLT0ht1l4YwBCbi8pJAveEEdnkHyPyTP/mzRfwg==
dependencies:
safe-buffer "~5.1.0"
strip-json-comments@~2.0.1:
version "2.0.1"
resolved "https://registry.yarnpkg.com/strip-json-comments/-/strip-json-comments-2.0.1.tgz#3c531942e908c2697c0ec344858c286c7ca0a60a"
@ -2636,7 +2899,7 @@ tunnel-agent@^0.6.0:
dependencies:
safe-buffer "^5.0.1"
type-is@~1.6.18:
type-is@^1.6.4, type-is@~1.6.18:
version "1.6.18"
resolved "https://registry.yarnpkg.com/type-is/-/type-is-1.6.18.tgz#4e552cd05df09467dcbc4ef739de89f2cf37c131"
integrity sha512-TkRKr9sUTxEH8MdfuCSP7VizJyzRNMjj2J2do2Jr3Kym598JVdEksuzPQCnlFPW4ky9Q+iA+ma9BGm06XQBy8g==
@ -2644,6 +2907,11 @@ type-is@~1.6.18:
media-typer "0.3.0"
mime-types "~2.1.24"
typedarray@^0.0.6:
version "0.0.6"
resolved "https://registry.yarnpkg.com/typedarray/-/typedarray-0.0.6.tgz#867ac74e3864187b1d3d47d996a78ec5c8830777"
integrity sha512-/aCDEGatGvZ2BIk+HmLf4ifCJFwvKFNb9/JeZPMulfgFracn9QFcAf5GO8B/mweUjSoblS5In0cWhqpfs/5PQA==
typescript@^5.4.3:
version "5.4.3"
resolved "https://registry.yarnpkg.com/typescript/-/typescript-5.4.3.tgz#5c6fedd4c87bee01cd7a528a30145521f8e0feff"
@ -2654,6 +2922,11 @@ undefsafe@^2.0.5:
resolved "https://registry.yarnpkg.com/undefsafe/-/undefsafe-2.0.5.tgz#38733b9327bdcd226db889fb723a6efd162e6e2c"
integrity sha512-WxONCrssBM8TSPRqN5EmsjVrsv4A8X12J4ArBiiayv3DyyG3ZlIg6yysuuSYdZsVz3TKcTg2fd//Ujd4CHV1iA==
underscore@^1.13.1:
version "1.13.7"
resolved "https://registry.yarnpkg.com/underscore/-/underscore-1.13.7.tgz#970e33963af9a7dda228f17ebe8399e5fbe63a10"
integrity sha512-GMXzWtsc57XAtguZgaQViUOzs0KTkk8ojr3/xAxXLITqf/3EMwxC0inyETfDFjH/Krbhuep0HNbbjI9i/q3F3g==
undici-types@~5.26.4:
version "5.26.5"
resolved "https://registry.yarnpkg.com/undici-types/-/undici-types-5.26.5.tgz#bcd539893d00b56e964fd2657a4866b221a65617"
@ -2664,7 +2937,7 @@ unpipe@1.0.0, unpipe@~1.0.0:
resolved "https://registry.yarnpkg.com/unpipe/-/unpipe-1.0.0.tgz#b2bf4ee8514aae6165b4817829d21b2ef49904ec"
integrity sha512-pjy2bYhSsufwWlKwPc+l3cN7+wuJlK6uz0YdJEOlQDbl6jo/YlPi4mb8agUkVC8BF7V8NuzeyPNqRksA3hztKQ==
util-deprecate@^1.0.1:
util-deprecate@^1.0.1, util-deprecate@~1.0.1:
version "1.0.2"
resolved "https://registry.yarnpkg.com/util-deprecate/-/util-deprecate-1.0.2.tgz#450d4dc9fa70de732762fbd2d4a28981419a0ccf"
integrity sha512-EPD5q1uXyFxJpCrLnCc1nHnq3gOa6DZBocAIiI2TaSCA7VCJ1UJDMagCzIkXNsUYfD1daK//LTEQ8xiIbrHtcw==
@ -2763,6 +3036,16 @@ ws@^8.17.1:
resolved "https://registry.yarnpkg.com/ws/-/ws-8.17.1.tgz#9293da530bb548febc95371d90f9c878727d919b"
integrity sha512-6XQFvXTkbfUOZOKKILFG1PDK2NDQs4azKQl26T0YS5CxqWLgXajbPZ+h4gZekJyRqFU8pvnbAbbs/3TgRPy+GQ==
xmlbuilder@^10.0.0:
version "10.1.1"
resolved "https://registry.yarnpkg.com/xmlbuilder/-/xmlbuilder-10.1.1.tgz#8cae6688cc9b38d850b7c8d3c0a4161dcaf475b0"
integrity sha512-OyzrcFLL/nb6fMGHbiRDuPup9ljBycsdCypwuyg5AAHvyWzGfChJpCXMG88AGTIMFhGZ9RccFN1e6lhg3hkwKg==
xtend@^4.0.0:
version "4.0.2"
resolved "https://registry.yarnpkg.com/xtend/-/xtend-4.0.2.tgz#bb72779f5fa465186b1f438f674fa347fdb5db54"
integrity sha512-LKYU1iAXJXUgAXn9URjiu+MWhyUXHsvfp7mcuYm9dSUKK0/CjtrUwFAxD82/mCWbtLsGjFIad0wIsod4zrTAEQ==
yallist@^4.0.0:
version "4.0.0"
resolved "https://registry.yarnpkg.com/yallist/-/yallist-4.0.0.tgz#9bb92790d9c0effec63be73519e11a35019a3a72"